Share:


Unsteady fluid flow in pressurised closed pipes in experimental bench examples

    Michał Stosiak   Affiliation
    ; Kamil Urbanowicz   Affiliation
    ; Krzysztof Towarnicki Affiliation
    ; Adam Deptuła   Affiliation
    ; Paulius Skačkauskas   Affiliation
    ; Tadeusz Leśniewski   Affiliation

Abstract

The paper indicates the frequent occurrence of transient states in hydraulic systems. Particular attention was paid to the phenomenon of water hammer – the causes and effects of this phenomenon. A complete analytical description of this phenomenon has not yet been developed. New theoretical models are still being developed and need to be verified experimentally. The paper focuses on presenting the development of experimental stands for the study of water hammer in hydraulic pipes. Subsequent modifications of the experimental stands for the speed of the shut-off valves and their tightness, as well as for the minimisation of the occurrence of the effects of the pulsation of the performance of the pump supplying the line under investigation, are presented. The stand presented as the final one also allows the testing of transients in hydraulic lines for various types of working fluid (oil, emulsion, distilled water).

Keyword : hydraulics, unsteady flow, water hammer, test stand, airplane crash

How to Cite
Stosiak, M., Urbanowicz, K., Towarnicki, K., Deptuła, A., Skačkauskas, P., & Leśniewski, T. (2023). Unsteady fluid flow in pressurised closed pipes in experimental bench examples. Aviation, 27(2), 67–74. https://doi.org/10.3846/aviation.2023.18914
Published in Issue
Apr 25, 2023
Abstract Views
574
PDF Downloads
577
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Adamkowski, A., Lewandowski, M., & Lewandowski, S. (2021). Fatigue life analysis of hydropower pipelines using the analytical model of stress concentration in welded joints with angular distortions and considering the influence of water hammer damping. Thin-Walled Structures, 159, 107350. https://doi.org/10.1016/j.tws.2020.107350

Bogdevičius, M., & Lingaitis, L. P. (2005). Simulation of dynamics processes of hydraulic system with axial-reciprocating piston pump and electrical engine. The Japan Fluid Power System Society, 2005(6), 95–99. https://doi.org/10.5739/isfp.2005.95

Chaban, R., Ghazy, A., Georgiade, E., Stumpf, N., & Vahl, Ch.-F. (2021). Negative effect of high-level infrasound on human myocardial contractility: In-vitro controlled experiment. Noise Health, 23(109), 57–66.

Engel, Z., & Zawieska, M. (2010). Hałas i drgania w procesach pracy: źródła, ocean, zagrożenia. Central Institute for Labour Protection – National Research Institute.

Gužas, D., & Viršilas, R. (2009). Infrasound hazards for the environment and the ways of protection. Ultragarsas (Ultrasound), 64(3), 34–37.

Hradecky, S. (2022). The Aviation Herald Accident: DHL Expreso B752 at San Jose on Apr 7th 2022, hydraulic failure results in runway excursion. https://avherald.com/h?article=4f719c2d&opt=0

Hunko, I., Tsurkan, O., Shargorodskiy, S., Shchur, T., Beloev, H., Kovalyshyn, O., & Domin, M. (2022). The influence of wave processes of hydraulic oils on the operation of a hydraulic drive. Agricultural Engineering, 26(1), 91–104. https://doi.org/10.2478/agriceng-2022-0008

Karpenko, M. (2022). Landing gear failures connected with high-pressure hoses and analysis of trends in aircraft technical problems. Aviation, 26(3), 145–152. https://doi.org/10.3846/aviation.2022.17751

Karpenko, M., & Bogdevičius, M. (2018). Investigation of hydrodynamic processes in the system – “axial piston pumps – pipeline – fittings”. In Transport Problems 2018, VII International Symposium of Young Researchers: Proceedings (pp. 832–843). Silesian University of Technology.

Karpenko, M., & Bogdevičius, M. (2020). Investigation into the hydrodynamic processes of fitting connections for determining pressure losses of transport hydraulic drive. Transport, 35(1), 108–120. https://doi.org/10.3846/transport.2020.12335

Karpenko, M. (2021). Investigation of energy efficiency of mobile machinery hydraulic drives [Doctoral dissertation. Technical sciences, Vilnius Gediminas Technical University]. https://doi.org/10.20334/2021-028-M

Kudźma, Z. (2012). Tłumienie pulsacji ciśnienia i hałasu w układach hydraulicznych w stanach przejściowych i ustalonych. Publishing House of Wrocław University of Science and Technology.

Leishear, R. A. (2020). Water hammer causes water main breaks. Journal of Pressure Vessel Technology, 142(2). https://doi.org/10.1115/1.4044423

Mei, C. C., & Jing, H. (2016). Pressure and wall shear stress in blood hammer – Analytical theory. Mathematical Biosciences, 280, 62–70. https://doi.org/10.1016/j.mbs.2016.07.007

Muto, T., & Takahashi, K. (1985). Transient responses of fluid lines (Step responses of single pipeline and series pipelines). Bulletin of the JSME, 28(244), 2325–2331. https://doi.org/10.1299/jsme1958.28.2325

National Transport Safety Committee. (2014). Runway Excursion Investigation Report PT. Sriwijaya Air Boeing 737-200; PK–CJD Sultan Mahmud Badarudin II Airport, Palembang, Sumatera Selatan, Republic of Indonesia 24 December 2011. National Transport Safety Committee, Ministry of Transportation, Republic of Indonesia.

Rich, G. R. (1945). Water hammer analysis in the Laplace-Mellin transformation. Transactions ASME, 67(5), 361–376. https://doi.org/10.1115/1.4018265

Saleh, J., Marais, K., Bakolas, E., & Cowlagi, R. (2010). Highlights from the literature on accident causation and system safety: Review of major ideas, recent contributions, and challenges. Reliability Engineering & System Safety, 95(11), 1105–1116. https://doi.org/10.1016/j.ress.2010.07.004

Stryczek, S. (2022). Napęd hydrostatyczny. WNT.

Tonin, R., Brett, J., & Colagiuri, B. (2016). The effect of infrasound and negative expectations to adverse pathological symptoms from wind farms. Journal of Low Frequency Noise, Vibration and Active Control, 35(1), 77–90. https://doi.org/10.1177/0263092316628257

Ułanowicz, L., Jastrzębski, G., & Szczepaniak, P. (2020). Method for estimating the durability of aviation hydraulic drives. Eksploatacja i Niezawodnosc – Maintenance and Reliability, 22(3), 557–564. https://doi.org/10.17531/ein.2020.3.19

Urbanowicz, K., Jing, H., Bergant, A., Stosiak, M., & Lubecki, M. (2021a). Progress in analytical modeling of water hammer. In Proceedings of The Fluids Engineering Division Summer Meeting FEDSM 2021. ASME. https://doi.org/10.1115/FEDSM2021-65920

Urbanowicz, K., Stosiak, M., Towarnicki, K., & Bergant, A. (2021b). Theoretical and experimental investigations of transient flow in oil-hydraulic small-diameter pipe system. Engineering Failure Analysis, 128(12), 1–16. https://doi.org/10.1016/j.engfailanal.2021.105607

Wylie, E. B., & Streeter, V. L. (1993). Fluid transients in systems. Prentice Hall.

Zarzycki, Z. (2000). On weighting function for wall shear stress during unsteady turbulent pipe flow. In Proceedings of the 8th International 549 Conference on Pressure Surges (pp. 529–543). BHR Group.

Zarzycki, Z., Kudźma, S., Kudźma, Z., & Stosiak, M. (2007). Simulation of transient flows in a hydraulic system with a long liquid line. Journal of Theoretical and Applied Mechanics, 45(4), 853–871.

Zhang, W., G., Guo, M., L., Miao, S., & Fei, Z. (2014). Fracture analysis of hydraulic pipe of airplane. Advanced Materials Research, 971–973, 485–488. https://doi.org/10.4028/www.scientific.net/AMR.971-973.485

Zielke, W. (1968). Frequency-dependent friction in transient pipe flow. Journal of ASME, 90, 109–115. https://doi.org/10.1115/1.3605049