Influence of HPFRCC compressive strength and confinement on concrete
Abstract
The article analyses behavior of compressed concrete cylinders which were strengthened with external high performance fiber reinforced cementitious composite (HPFRCC) layer. Two different HPFRCC materials were used for the strengthening, which differed in fiber type. Two different types of loading were applied as well. The load was transferred through the whole cross section of the strengthened element and through the core – internal concrete. Loading through the whole cross section allows to validate the mixture law. Loading through the internal concrete allows to investigate the confinement effect. Comparison of theoretically calculated and experimental strength shows that mixture law and confinement effect is valid. Confinement by HPFRCC allowed to increase the strength of concrete about 4 times, but the ultimate strain remains similar. The strength of elements loaded through the whole surface has increased much more and additionally the ultimate strain has increased too.
Keyword : concrete, strengthening, HPFRCC, confinement, compressive strength
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Campione, G., La Mendola, L., Monaco, A., Valenza, A., & Fiore, V. (2015). Behavior in compression of concrete cylinders externally wrapped with basalt fibers. Composites Part B: Engineering, 69, 507-586. https://doi.org/10.1016/j.compositesb.2014.10.008
Cascardi, A., Aiello, M. A., & Triantafillou, T. (2017). Analysisoriented model for concrete and masonry confined with fiber reinforced mortar. Materials and Structures, 50(4), 202. https://doi.org/10.1617/s11527-017-1072-0
Cascardi, A., Longo, F., Micelli, F., & Aiello, M. A. (2017). Compressive strength of confined column with Fiber Reinforced Mortar (FRM): New design-oriented-models. Construction and Building Materials, 156, 387-401. https://doi.org/10.1016/j.conbuildmat.2017.09.004
Chastre, C., & Silva, M. A. G. (2010). Monotonic axial behavior and modelling of RC circular columns confined with CFRP. Engineering Structures, 32, 2268-2277. https://doi.org/10.1016/j.engstruct.2010.04.001
Colajanni, P., De Domenico, F., Recupero, A., & Spinella, N. (2014). Concrete columns confined with fibre reinforced cementitious mortars: Experimentation and modelling. Construction and Building Materials, 52, 375-384. https://doi.org/10.1016/j.conbuildmat.2013.11.048
Daugevičius, M., & Valivonis, J. (2013). Axially loaded concrete and reinforced concrete elements strengthened with HPFRCC. Paper presented at the Fiber concrete, September 12-13. Prague, Czech Republic.
Daugevičius, M., & Valivonis, J. (2017). Concrete and reinforced concrete elements strengthened with HPFRCC. KSCE Journal of Civil Engineering, 22(8), 2961-2969. https://doi.org/10.1007/s12205-017-0044-9
De Caso y Basalo, F., Matta, F., & Nanni, A. (2012). Fiber reinforced cement-based composite system for concrete confinement. Construction and Building Materials, 32, 55-65. https://doi.org/10.1016/j.conbuildmat.2010.12.063
Ghalieh, L., Awwad, E., Saad, G., Khatib, H., & Mabsout, M. (2017). Concrete columns wrapped with hemp fiber reinforced polymer – an experimental study. Procedia Engineering, 200, 440-447. https://doi.org/10.1016/j.proeng.2017.07.062
Huang, L., Sun, X., Yan, L., & Zhu, D. (2015). Compressive behavior of concrete confined with GFRP tubes and steel spirals. Polymers, 7, 851-875. https://doi.org/10.3390/polym7050851
Napoli, A., & Realfonzo, R. (2016). Compressive behavior of concrete confined by SRP wraps. Construction and Building Materials, 127, 993-1008. https://doi.org/10.1016/j.conbuildmat.2016.01.055
Ombres, L. (2014). Concrete confinement with a cement based high strength composite material. Composite Structures, 109, 294-304. https://doi.org/10.1016/j.compstruct.2013.10.037
Ortlepp, R., & Ortlepp, S. (2017). Textile reinforced concrete for strengthening of RC columns: A contribution to resource conservation through the preservation of structures. Construction and Building Materials, 132, 150-160. https://doi.org/10.1016/j.conbuildmat.2016.11.133
Raffoul, S., Garcia, R., Escolano-Margarit, D., Guadagnini, M., Hajirasouliha, I., & Pilakoutas, K. (2017). Behaviour of unconfined and FRP-confined rubberised concrete in axial compression. Construction and Building Materials, 147, 388-397. https://doi.org/10.1016/j.conbuildmat.2017.04.175
Shi-ping, Y., Xiang-qian, H., & Yun-tao, H. (2018). Study on the compression performance of small eccentric degradation columns strengthened with TRC in a chloride environment. Construction and Building Materials, 176, 50-59. https://doi.org/10.1016/j.conbuildmat.2018.05.003
Tamuzs, V., Tepfers, R., & Sparnins, E. (2006). Behavior of concrete cylinders confined by a carbon composite 2. Prediction of strength. Mechanics of Composite Materials, 42(2), 165-178. https://doi.org/10.1007/s11029-006-0022-7
Thermou, G. E., & Hajirasouliha, I. (2018). Compressive behaviour of concrete columns confined with steel-reinforced grout jackets. Composites Part B: Engineering, 138, 222-231. https://doi.org/10.1016/j.compositesb.2017.11.041
Trapko, T. (2013). Stress–strain model for FRCM confined concrete elements. Composites Part B: Engineering, 45, 1351-1359. https://doi.org/10.1016/j.compositesb.2012.07.001
Trapko, T. (2014). Confined concrete elements with PBO-FRCM composites. Construction and Building Materials, 73, 332-338. https://doi.org/10.1016/j.conbuildmat.2014.09.055
Vincent, T., & Ozbakkaloglu, T. (2015). Influence of shrinkage on compressive behavior of concrete-filled FRP tubes: An experimental study on interface gap effect. Construction and Building Materials, 75, 144-156. https://doi.org/10.1016/j.conbuildmat.2014.10.038
Wei, Y., & Wu, Y. F. (2014). Compression behavior of concrete columns confined by high strength steel wire. Construction and Building Materials, 54, 443-453. https://doi.org/10.1016/j.conbuildmat.2013.12.083
Zhou, J., Bi, F., Wang, Z., & Zhang, J. (2016). Experimental investigation of size effect on mechanical properties of carbon fiber reinforced polymer (CFRP) confined concrete circular specimens. Construction and Building Materials, 127, 643652. https://doi.org/10.1016/j.conbuildmat.2016.10.039