Share:


Stabilization of clay powder with mineral wool fly ash

    Mindaugas Zakarka   Affiliation
    ; Rimantas Mackevičius   Affiliation
    ; Šarūnas Skuodis   Affiliation
    ; Danutė Sližytė   Affiliation
    ; Andrius Kudžma   Affiliation

Abstract

The aim of this article – to determine short term and long term strengthening of clay soil, by strengthening it with fly ash obtained during the production of mineral wool. This article introduces research which is used to determine the optimal ratio of fly ash in cement suspension for strengthening of clay soil. Samples which were investigated in this research work prepared by mixing Portland cement, mineral wool fly ash, clay powder, sand and water. All investigated samples compressive strength after 6 months exceeded 1.7 MPa. It is enough of such strength in geotechnics to conduct strengthening of soil and it is possible to argue that soil is strengthened.


First published online 13 February 2020

Keyword : clay, soil stabilization, fly ash, soil improvement, mineral wool, comprehensive strength

How to Cite
Zakarka , M., Mackevičius , R., Skuodis , Šarūnas, Sližytė, D., & Kudžma , A. (2019). Stabilization of clay powder with mineral wool fly ash. Engineering Structures and Technologies, 11(4), 106-113. https://doi.org/10.3846/est.2019.12021
Published in Issue
Dec 31, 2019
Abstract Views
1134
PDF Downloads
438
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Balkevičius, V., Christauskas, J., Gailius, A., Špokauskas, A., & Siaurys, V. (2007). Analysis of some properties of model system from low-melting illite clay and fibrous mineral wool waste. Materials Science-Poland, 25(1), 209–217.

Česnauskas, V. (2018). Biomass fly ash additive for Portland cement and slag cement (Dissertation). Kaunas University of Technology. http://ktu.edu

Cristelo, N., Glendinning, S., Fernandes, L., & Teixeira Pinto, A.(2011). Deep soft soil improvement by alkaline activation. Proceedings of the Institution of Civil Engineers Ground Improvement, 164(2), 73–82. https://doi.org/10.1680/grim.900032

Cristelo, N., Soares, E., Rosa, I., Miranda, T., Oliveira, D. V., Silva, R. A., & Chaves, A. (2013). Rheological properties of alkaline activated fly ash used in jet grouting applications. Construction and Building Materials, 48, 925–933. https://doi.org/10.1016/j.conbuildmat.2013.07.063

Essler, R., & Yoshida, H. (2004). Jet grouting. In M. P. Moseley & K. Kirsch (Eds.), Ground improvement (2nd ed., pp. 160–196). Taylor & Francis. https://doi.org/10.4324/9780203305201_chapter_5

European Commission. (2010). Being wise with waste: the EU’s approach to waste management. Publications Office of the European Union.

Fuller, A., Stegmaier, M., Schulz, N., Menke, M., Schellhorn, H., Knödler, F., Maier, J., & Scheffknecht, G. (2018). Use of wood dust fly ash from an industrial pulverized fuel facility for rendering. Construction and Building Materials, 189, 825–848. https://doi.org/10.1016/j.conbuildmat.2018.09.016

Giergiczny, Z. (2019). Fly ash and slag. Cement and Concrete Research. https://doi.org/10.1016/j.cemconres.2019.105826

Hemalatha, T., & Ramaswamy, A. (2017). A review on fly ash characteristics – Towards promoting high volume utilization in developing sustainable concrete. Journal of Cleaner Production, 147, 546–559. https://doi.org/10.1016/j.jclepro.2017.01.114

Lahtinen, P. (2001). Fly ash mixtures as flexible structural materials for low-volume roads (Finnra Reports 70/2001). Department of Civil and Environmental Engineering, Helsinki.

Lietuvos standartizacijos departamentas. (2013). Cementas. 1 dalis. Įprastinių cementų sudėtis, techniniai reikalavimai ir atitikties kriterijai (LST EN 197-1 2013).

Lietuvos standartizacijos departamentas. (2017). Geotechniniai tyrinėjimai ir bandymai. Laboratoriniai grunto bandymai. 4 dalis. Granuliometrinės sudėties nustatymas (LST CEN ISO/ TS 17892-4:2017).

Lietuvos standartizacijos departamentas. (2018). Geotechniniai tyrinėjimai ir bandymai. Laboratoriniai grunto bandymai. 12 dalis. Takumo ir plastiškumo ribų nustatymas (LST CEN ISO/ TS 17892-12:2018).

Kolias, S., Kasselouri-Rigopoulou, V., & Karahalios, A. (2004). Stabilisation of clayey soils with high calcium fly ash and cement. Cement and Concrete Composites, 27(2), 301–313. https://doi.org/10.1016/j.cemconcomp.2004.02.019

Marinković, S., & Dragaš, J. (2018). Fly ash. In Waste and supplementary cementitious materials in concrete (pp. 325–360). https://doi.org/10.1016/B978-0-08-102156-9.00011-0

Mishra, N. K., & Rath, S. (2011). Cost effectiveness of clayey soil & moorum, treated with fly ash-lime for construction of low volume roads. International Journal of Civil and Structural Engineering, 2(1), 370–381.

Parsons, R. L., & Kneebone, E. (2005). Field performance of fly ash stabilised subgrades. Ground Improvement, 9(1), 33–38. https://doi.org/10.1680/grim.2005.9.1.33

Pundinaitė-Barsteigienė, M., Bačinskas, D., Spudulis, E., & Rumšys, D. (2017). MSWI bottom ash utilization in concrete mixes. Science – Future of Lithuania, 9(5), 524–530. https://doi.org/10.3846/mla.2017.1081

Rudžionis, Ž., & Ivanauskas, E. (2004). Investigations into efective fly ash used in concrete. Journal of Civil Engineering and Management, 10(4), 303–309. https://doi.org/10.1080/13923730.2004.9636323

Rutkauskas, A. (2018). Influence of mineral additives on the resistance of concrete to alkali-silica reaction (Dissertation). Vilnius Gediminas Technical University. http://dspace.vgtu.lt

Sližytė, D., Dagys, A., Medzvieckas, J., & Milvydas, R. (2010, May 19–21). Using of jet grouting piles reinforced with central bars for low retaining walls. In Proceedings of The 10th International Conference “Modern Building Materials and Techniques” (pp. 1168 –1173). Vilnius, Lithuania.

Stonys, R., Kuznetsov, D., Krasnikovs, A., Škamat, J., Baltakys, K., Antonovič, V., & Černašėjus, O. (2016). Reuse of ultrafine mineral wool production waste in the manufacture of refractory concrete. Journal of Environmental Management, 176, 149–156. https://doi.org/10.1016/j.jenvman.2016.03.045

Supancic, K., & Obernberger, I. (2011). Wood ash utilisation as a stabiliser in road construction – first results of large-scale tests. Institute of Process and Particle Engineering. https://www.bios-bioenergy.at

Turner, J. P. (1997). Evaluation of western coal fly ashes for stabilization of low-volume roads. In M. Wasemiller & K. Hoddinott (Eds.), Testing soil mixed with waste or recycled materials (pp. 157–171). ASTM International. https://doi.org/10.1520/STP15649S

Vaitkus, A., Grazulyte, J., Vorobjovas, V., Šernas, O. & Kleiziene, R. (2017). Potential of MSWI bottom ash to be used as aggregate in road building materials. The Baltic Journal of Road and Bridge Engineering, 13(1), 77–86. https://doi.org/10.3846/bjrbe.2018.401

Väntsi, O., & Kärki, T. (2014). Mineral wool waste in Europe: a review of mineral wool waste quantity, quality, and current recycling methods. Journal of Material Cycles and Waste Management, 16, 62–72. https://doi.org/10.1007/s10163-013-0170-5

Zabihi-Samani, M., Mokhtari, S. P., & Raji, F. (2018). Effects of fly ash on mechanical properties of concrete. Journal of Applied Engineering Sciences, 8(21), 35–40. https://doi.org/10.2478/jaes-2018-0016

Zokaitė, K. (2015). Geotechnical properties of triassic clay-cement mix. (Master’s Thesis). Vilnius University. https://epublications.vu.lt