Impact of multi-walled carbon nanotubes on wood sawdust extract cement mortar
Abstract
It is well known that organic waste materials deteriorate the performance of concrete. The impregnation of organic aggregates and their application in combination with other chemical admixtures and mineral additives are used in order to improve the concrete properties in case of their modification by organic components. The current research is focused on the evaluation of impact of multi-walled carbon nanotubes (MWCNT) on the properties of cement systems prepared based on wood sawdust extract (WSE). The setting time, density, consistency, flexural and compressive strength, water absorption tests were undertaken. The retardation effect of (WSE) on the initial and final setting time of cement paste was observed. The additional modification of cement paste with WSE by MWCNT in the dosage of 0.005% by weight of cement (bwoc) did not show the significant changes in initial and final setting time. The application of MWCNT in the dosage of 0.005% bwoc contributed to the increase of early strength of cement mortar prepared with WSE.
First published online 14 April 2020
Keyword : waste materials, concrete, nanomodification, carbon nanotubes
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Aigbomian, E. P., & Fan, M. (2013). Development of wood-crete building materials from sawdust and waste paper. Construction and Building Materials, 40, 361–366. https://doi.org/10.1016/j.conbuildmat.2012.11.018
Aigbomian, E. P., & Fan, M. (2014). Development of wood-crete from treated sawdust. Construction and Building Materials, 52, 353–360. https://doi.org/10.1016/j.conbuildmat.2013.11.025
Bajare, D., Kazjonovs, J., & Korjakins, A. (2013). Lightweight concrete with aggregates made by using industrial waste. Journal of Sustainable Architecture and Civil Engineering, 4(5), 67–73. https://doi.org/10.5755/j01.sace.4.5.4188
Bederina, M., Gotteicha, M., Belhadj, B., Dheily, R. M., Khenfer, M. M., & Queneudec, M. (2012). Drying shrinkage studies of wood sand concrete – Effect of different wood treatments. Construction and Building Materials, 36, 1066–1075. https://doi.org/10.1016/j.conbuildmat.2012.06.010
Boltryk, M., Krupa, A., & Pawluczuk, E. (2018). Modification of the properties of the cement composites with the organic filler. Construction and Building Materials, 167, 143–153. https://doi.org/10.1016/j.conbuildmat.2018.02.025
Cheng, Y., You, W., Zhang, C., Li, H., & Hu, J. (2013). The implementation of waste sawdust in concrete. Engineering, 5, 943–947. https://doi.org/10.4236/eng.2013.512115
Corinaldesi, V. (2010). Mechanical and elastic behaviour of concretes made of recycled-concrete coarse aggregates. Construction and Building Materials, 24, 1616–1620. https://doi.org/10.1016/j.conbuildmat.2010.02.031
European Committee for Standardization. (2016). Methods of testing cement – Part 1: Determination of strength. (EN 196-1). Brussels, Belgium.
European Committee for Standardization. (2012). Cement – Part 1: Composition, specifications and conformity criteria for common cements. (EN 197-1). Brussels, Belgium.
European Committee for Standardization. (2007). Admixtures for concrete, mortar and grout – Test methods – Part 2: Determination of setting time. (EN 480-2). Brussels, Belgium.
European Committee for Standardization. (2005). Mixing water for concrete – Specification for sampling, testing and assessing the suitability of water, including water recovered from processes in the concrete industry, as mixing water for concrete. (EN 1008). Brussels, Belgium.
European Committee for Standardization. (2004a). Methods of test for mortar for masonry – Part 3: Determination of consistence of fresh mortar (by flow table) (EN 1015-3). Brussels, Belgium.
European Committee for Standardization. (2004b). Methods of test for mortar for masonry – Part 10: Determination of dry bulk density of hardened mortar. (EN 1015-10). Brussels, Belgium.
European Committee for Standardization. (2020). Methods of test for mortar for masonry – Part 11: Determination of flexural and compressive strength of hardened mortar (EN 1015-11). Brussels, Belgium.
Gil, H., Ortega, A., & Perez, J. (2017). Mechanical behavior of mortar reinforced with sawdust waste. Procedia Engineering, 200, 325–332. https://doi.org/10.1016/j.proeng.2017.07.046
Han, B., Yang, Z., Shi, X., & Yu, X. (2013). Transport properties of carbon-nanotube/cement composites. Journal of Materials Engineering and Performance, 22(1), 184–189 https://doi.org/10.1007/s11665-012-0228-x
Isfahani, F. T., Li, W., & Redaelli, E. (2016). Dispersion of multiwalled carbon nanotubes and its effects on the properties of cement composites. Cement and Concrete Composites, 74, 154–163. https://doi.org/10.1016/j.cemconcomp.2016.09.007
Kawashima, S., Hou, P., Corr, D. J., & Shah, S. P. (2013). Modification of cement-based materials with nanoparticles. Cement and Concrete Composites, 36, 8–15. https://doi.org/10.1016/j.cemconcomp.2012.06.012
Liew, K. M., Sojobi, A. O., & Zhang, L. W. (2017). Green concrete: Prospects and challenges. Construction and Building Materials, 156, 1063–1095. https://doi.org/10.1016/j.conbuildmat.2017.09.008
Madrid, M., Orbe, A., Carre, H., & Garcia, Y. (2018). Thermal performance of sawdust and lime-mud concrete masonry units. Construction and Building Materials, 169, 113–123. https://doi.org/10.1016/j.conbuildmat.2018.02.193
Memon, R. P., Mohd. Sam, A. R., Abdul Awal, A. S. M., & Achekzai, L. (2017). Mechanical and thermal properties of sawdust concrete. Sciences and Engineering, 79(6), 23–27. https://doi.org/10.11113/jt.v79.9341
Mishra, P. C., Singh, V. K., Narang, K. K., & Singh, N. K. (2003). Effect of carboxymethyl-cellulose on the properties of cement. Materials Science and Engineering: A, 357(1–2), 13–19. https://doi.org/10.1016/S0921-5093(02)00832-8
Ossa, A., Garcia, J. L., & Botero, E. (2016). Use of recycled construction and demolition waste (CDW) aggregates: A sustainable alternative for the pavement construction industry. Journal of Cleaner Production, 135, 379–386. https://doi.org/10.1016/j.jclepro.2016.06.088
Ramos, T., Matos, A. M., & Sousa-Coutinho, J. (2013). Mortar with wood waste ash: Mechanical strength carbonation resistance and ASR expansion. Construction and Building Materials, 49, 343–351. https://doi.org/10.1016/j.conbuildmat.2013.08.026
Sobolkina, A., Mechtcherine, V., Khavrus, V., Maier, D., Mende, M., Ritschel, M., & Leonhardt, A. (2012). Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix. Cement and Concrete Composites, 34, 1104–1113. https://doi.org/10.1016/j.cemconcomp.2012.07.008
Sosoi, G., Barbuta, M., Serbanoiu, A. A., Babor, D., & Burlacu, A. (2018). Wastes as aggregate substitution in polymer concrete. Procedia Manufacturing, 22, 347–351. https://doi.org/10.1016/j.promfg.2018.03.052
Vishwakarma, V., & Ramachandran, D. (2018). Green Concrete mix using solid waste and nanoparticles as alternatives – A review. Construction and Building Materials, 162, 96–103. https://doi.org/10.1016/j.conbuildmat.2017.11.174
Wu, Z., Shi, C., Khayat, K. H., & Wan, S. (2016). Effects of different nanomaterials on hardening and performance of ultrahigh strength concrete (UHSC). Cement and Concrete Composites, 70, 24–34. https://doi.org/10.1016/j.cemconcomp.2016.03.003
Zhang, P., Wan, J., Wang, K., & Li, Q. (2017). Influence of nanoSiO2 on properties of fresh and hardened high performance concrete: A state-of-the-art review. Construction and Building Materials, 148, 648–658. https://doi.org/10.1016/j.conbuildmat.2017.05.059