Behaviour of mineral wool sandwich panels under bending load at room and elevated temperatures
Abstract
This paper presents a parametric study for the bending stiffness of mineral wool (MW) sandwich panels subjected to a bending load. The MW panels are commonly used as wall panels for industrial buildings. They provide excellent insulation in the case of fire. In this research, the performance of sandwich panels is investigated at both ambient and elevated temperatures. To reach that goal, a finite element (FE) model is developed to verify simulations with experimental results in normal conditions and fire case. The experimental investigation in the current paper is a part of STABFI project financed by Research Fund for Coal and Steel (RFCS). The numerical study is conducted using ABAQUS software. Employing simulations for analysis and design is an alternative to costly tests. However, in order to rely on numerical results, simulations must be verified with the experimental results. In this paper, after the verification of FE results, a parametric study is conducted to observe the effects of the panel thickness, length and width, as well as the facing thickness on the bending stiffness of MW sandwich panels at normal conditions. The results indicate that the panel thickness has the most significant effect on the bending stiffness of sandwich panels.
Keyword : composite sandwich panels, bending stiffness, load-bearing capacity, finite element models, elevated temperatures, mineral wool foams
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Dassault Systemes. (2017). ABAQUS. https://www.3ds.com/support/hardware-and-software/simulia-system-information/abaqus-2017/abaqus-2017-graphics-devices/
European Committee for Standardisation. (2005). Eurocode 3: Design of steel structures – Part 1–2: General rules – Structural fire design (EN 1993-1-2).
European Committee for Standardization. (2013). Self-supporting double skin metal faced insulating panels – Factory made products – Specifications (EN 14509:2013). https://standards.iteh.ai/catalog/standards/cen/b1a522e8-6be2-4edb-97ea-64ea66c5134f/en-14509-2013
European Convention for Constructional Steelwork. (2013). European recommendations on the stabilization of steel structures by sandwich panels (CIB Publication 379). http://site.cibworld.nl/dl/publications/pub_379.pdf
Hassinen, P., Misiek, T., & Naujoks, B. (2011). Cladding systems for sandwich panels. Refurbishment of walls and roofs. In Conference: Eurosteel 2011 (pp. 2199–2204). Budapest.
Iyer, S. V., Chatterjee, R., Ramya, M., Suresh, E., & Padmanabhan, K. (2018). A comparative study of the three point and four point bending behaviour of rigid foam core glass/epoxy face sheet sandwich composites. Materials Today: Proceedings, 5(5), 12083–12090. https://doi.org/10.1016/j.matpr.2018.02.184
Joseph, J. D. R., Prabakar, J., & Alagusundaramoorthy, P. (2018). Flexural behavior of precast concrete sandwich panels under different loading conditions such as punching and bending. lexandria Engineering Journal, 57(1), 309–320. https://doi.org/10.1016/j.aej.2016.11.016
Liu, F., Fu, F., Wang, Y., & Liu, Q. (2017). Fire performance of non-load-bearing light-gauge slotted steel stud walls. Journal of Constructional Steel Research, 137, 228–241. https://doi.org/10.1016/j.jcsr.2017.06.034
Liu, J., Liu, J., Mei, J., & Huang, W. (2018). Investigation on manufacturing and mechanical behavior of all-composite sandwich structure with Y-shaped cores. Composites Science and Technology, 159, 87–102. https://doi.org/10.1016/j.compscitech.2018.01.026
Misiek, T., Krüger, H., Ummenhofer, T., & Kathage, K. (2010). Buckling of stiffeners for stainless steel trapezoidal sheeting. Steel Construction, 3(4), 225–230. https://doi.org/10.1002/stco.201010029
Mofrad, A. S., Shlychkova, D., Ciupack, Y., & Pasternak, H. (2019). Evaluating bending stiffness and resistance of sandwich panels at elevated temperatures. In The Proceedings of the 13th International Conference “Modern Building Materials, Structures and Techniques” (MBMST 2019) (pp. 463–469). Vilnius Gediminas Technical University. https://doi.org/10.3846/mbmst.2019.032
Moongkhamklang, P., Deshpande, V. S., & Wadley, H. N. G. (2010). The compressive and shear response of titanium matrix composite lattice structures. Acta Materialia, 58(8), 2822–2835. https://doi.org/10.1016/j.actamat.2010.01.004
Naik, R. K., Panda, S. K., & Racherla, V. (2020). A new method for joining metal and polymer sheets in sandwich panels for highly improved interface strength. Composite Structures, 251, 112661. https://doi.org/10.1016/j.compstruct.2020.112661
Noor, A. K., Burton, W. S., & Bert, C. W. (1996). Computational models for sandwich panels and shells. Applied Mechanics Reviews, 49(3), 155–199. https://doi.org/10.1115/1.3101923
Ozyurt, E. (2020). Finite element study on axially loaded reinforced Square Hollow Section T-joints at elevated temperatures. Thin-Walled Structures, 148, 106582. https://doi.org/10.1016/j.tws.2019.106582
Srivaro, S., Matan, N., & Lam, F. (2015). Stiffness and strength of oil palm wood core sandwich panel under center point bending. Materials & Design, 84, 154–162. https://doi.org/10.1016/j.matdes.2015.06.097
Sun, Y., & Li, Y. (2017). Prediction and experiment on the compressive property of the sandwich structure with a chevron carbon-fibre-reinforced composite folded core. Composites Science and Technology, 150, 95–101. https://doi.org/10.1016/j.compscitech.2017.06.029
Wang, B., Wu, L., Ma, L., Sun, Y., & Du, S. (2010). Mechanical behavior of the sandwich structures with carbon fiberreinforced pyramidal lattice truss core. Materials & Design (1980–2015), 31(5), 2659–2663. https://doi.org/10.1016/j.matdes.2009.11.061
Wu, Q., Ma, L., Wu, L., & Xiong, J. (2016). A novel strengthening method for carbon fiber composite lattice truss structures. Composite Structures, 153, 585–592. https://doi.org/10.1016/j.compstruct.2016.06.060
Yin, S., Wu, L., Ma, L., & Nutt, S. (2011). Pyramidal lattice sandwich structures with hollow composite trusses. Composite Structures, 93(12), 3104–3111. https://doi.org/10.1016/j.compstruct.2011.06.025
Zhang, G., Ma, L., Wang, B., & Wu, L. (2012). Mechanical behaviour of CFRP sandwich structures with tetrahedral lattice truss cores. Composites Part B: Engineering, 43(2), 471–476. https://doi.org/10.1016/j.compositesb.2011.11.017
Zhou, J., Wang, Y., Liu, J., Liu, J., Mei, J., Huang, W., & Tang, Y. (2018). Temperature effects on the compressive properties and failure mechanisms of composite sandwich panel with Yshaped cores. Composites Part A: Applied Science and Manufacturing, 114, 72–85. https://doi.org/10.1016/j.compositesa.2018.08.003