Share:


Ageing models and accelerated ageing tests of glass fiber reinforced concrete

    Rimvydas Moceikis Affiliation
    ; Asta Kičaitė Affiliation
    ; Gintautas Skripkiūnas Affiliation
    ; Aleksandrs Korjakins Affiliation

Abstract

Glass fiber reinforced concrete (GRC) is used for 40 years to create world’s most stunning and complex architectural elements due to its high mechanical properties, particularly flexural strength. Yet it is very important to note that any type of glass fibers in the concrete matrix are undergoing complex ageing processes, resulting to significant decrease of initial mechanical characteristics of this composite material under natural weathering conditions. Aspects of GRC durability are mainly dependent from the properties of fibers and interaction between them and concrete matrix. In this article, long term strength retention of this composite material is discussed, existing experimental data of weathering tests presented, and main corrosion mechanisms explained. Lack of knowledge about freeze- thaw resistance of glass fiber reinforced concrete is addressed. Finally, latest attempts of GRC durability improvement are reviewed, such as adding micro fillers, polymers to the concrete matrix and enhancing surface of fibers in Nano scale.

Keyword : glass reinforced concrete, glass fibers, durability, static fatigue, freeze- thaw

How to Cite
Moceikis, R., Kičaitė, A., Skripkiūnas, G., & Korjakins, A. (2018). Ageing models and accelerated ageing tests of glass fiber reinforced concrete. Engineering Structures and Technologies, 10(1), 10-17. https://doi.org/10.3846/est.2018.1467
Published in Issue
Apr 27, 2018
Abstract Views
1895
PDF Downloads
1079
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Abanilla, M. A., Azhari, F., Banthia, N., et al. (2006). Durability of fibre reinforcef polymers in Civil infrastructure (Durability Monograph). ISIS Canada reseach network.

Bentur, A. (1985). Proceedings in PCI symposium: Durability of Glass Fibre Reinforced Concrete (108 p.). Illinois, USA.

Butler, M., Mechtcherine, V., & Hempel, S. (2009). Experimental investigations on the durability of fibre–matrix interfaces in textile-reinforced concrete. Cement and Concrete Composites, 31, 221-231. https://doi.org/10.1016/j.cemconcomp.2009.02.005

Building Research Establishment Information Paper CP38/79. (1979). Properties of GRC: ten year results.

Bartos, M. J., & Zhu, W. (1996). Effect of microsilica and acrylic polymer treatment on the ageing of GRC. Cement and Con-crete Composites, 18, 31-39. https://doi.org/10.1016/0958-9465(95)00041-0

Ball, H. (1993). Durability of naturally aged, GFRC mixes conaining Forton Polymer and SEM analysis of the facture interface. Recommended Practice for Glass Fiber Reinforced Concrete Panels (4th ed.). MNL-128-01. PCI, Chicago, IL.

Brandt, A. M., & Glinicki, M. A. (2003). Effects of pozzolanic additives on long- term flexural toughness of HPGRC. Fourth international workshop on high performance fiber reinforced cement composites. University of Michigan and the University of Stuttgard.

Cohen, M. D., & Constantiner, D. (1985). Proceedings in PCI symposium: Durability of Glass Fibre Reinforced Concrete (158 p.). Illinois, USA.

CEN/TS 12390-9:2006. Testing hardened concrete. Freeze-thaw resistance. Scaling.

Correia, R., Ferreira, J., Branco, A. (2005). A rehabilitation study of sandwich GRC façade panels. Construction and Building Materials, 20, 554-561.

Diamond, S. (1985). Proceedings in PCI symposium: Durability of Glass Fibre Reinforced Concrete (199 p.). Illinois, USA.

Enfedaque, A., Paradela, L. S., & Galvez, V. S. (2012). An alter-native methodology to predict aging effects on the mechanical properties of glass fiber reinforced cements (GRC).

EN 1170-8:2008. Test method for glass-fibre reinforced cement. Cyclic weathering type test.

EN 15191:2009. Precast concrete products. Classification of glass-fibre reinforced concrete performance.

EN 13198:2003. Precast concrete products. Street furniture and garden products.

GOST 12730.4- 78:1980. BETONY. Metody opredeleniya poka-zateley poristosti.

Gao, S. L., Mader, E., & Plonka, R. (2007). Nanocomposite coatings for healing surface defects of glass fibers and improving interfacial adhesion. Composites Science and Technology, 68, 2892-2901. https://doi.org/10.1016/j.compscitech.2007.10.009

Huijun, W., Jing, Z., Zhomgehang, W., & Ting, S. (2013). Damage action of Alkali- resistant Glass Fiber in Cement- based Material. Journal of Wuhan University of Technology- Mater Sci. Ed., 28(4), 761-765. https://doi.org/10.1007/s11595-013-0765-7

Ispir, M., Dalgic, K. D., Hajihosseinlou, S., & Ilki, A. (2015). Long term deformation monitoring of GRC façade panels under ambient conditions. GRCA congress 2015 proceedings.

Jaras, A. C., & Litherland, K. L. (1975). Proceedings in RILEM symposium: Fibre Reinforced Cement and Concrete (327 p.).

Litherland, K. L., Oakley D. R., & Proctor B. A. (1981). The use of accelerated ageing procedures to predict the long term strength of GRC composites. Cement and Concrete Research 11, 455-466. https://doi.org/10.1016/0008-8846(81)90117-4

Laws, V., Langley, A. A., & West, J. M. (1986). The glass fibre/cement bond. Journal of Materials science, 21, 289-296. https://doi.org/10.1007/BF01144734

LST 1428.19. Betonas. Bandymo metodai. Atsparumo šalčiui nustatymas vienpusio šaldymo būdu.

Majumdar, A. J., West, J. M., & Larner, L. J. (1977). Properties of glass fibres in cement environment. Journal of Materials Sci-ence, 12, 927-936. https://doi.org/10.1007/BF00540975

Mills, R. H. (1981). Preferential precipitation of calcium hydroxide on alkali- resistant glass fibers. Cement and Concrete Research, 11, 689-697. https://doi.org/10.1016/0008-8846(81)90027-2

Mader, E., & Plonka, R. (2004). Coatings on alkali- resistant glass fibres for the improvement of concrete. Journal of Industrial Textiles, 33, 191-208. https://doi.org/10.1177/1528083704039833

Orlowsky, J., Raupach, M., Cuypers, H., & Wastiels, J. (2005). Durability modeling of glass fibre reinforcement in cemen-titious environment. Materials and Structures, 38, 155-162. https://doi.org/10.1007/BF02479340

Purnell, P. (2001). A static fatigue model for the durability of glass fibre reinforced cement. Journal of Materials Science, 36, 5385-5390. https://doi.org/10.1023/A:1012496625210

Paul, A. (1977). Chemical durability of glasses: a thermodynamic approach. Journal of Materials Science, 12, 2246-2268. https://doi.org/10.1007/BF00552247

Purnell, P., & Beddows, J. (2005). Durability and simulated ageing of new matrix glass fibre reinforced concrete. Cement and Concrete Composites, 27, 875-884. https://doi.org/10.1016/j.cemconcomp.2005.04.002

Purnell, P., Cain, J., Itterbeck, P., & Lesko, J. (2008). Service life modeling of fibre composites: a unified approach. Composites Science and technology, 68, 3330-3336. https://doi.org/10.1016/j.compscitech.2008.08.026

Purnell, P., Short, N. R.; Page, C. L., Majumdar, A. J. (1999). Accelerated ageing characteristics of glass-fibre reinforced cement made with new cementitious matrices. Composites: Part A, 30, 1073-1080. https://doi.org/10.1016/S1359-835X(99)00019-6

Purnell, P., Short, N. R., & Page, C. L. (2001). Super- critical carbonation of glass- fibre reinforced cement. Composites Part A: Applied science and manufacturing, 32, 1777-1787. https://doi.org/10.1016/S1359-835X(01)00019-7

Peled, A., Jones, J., & Shah, S. P. (2005). Effect of matrix modification on durability of glass fiber reinforced cement composites. Materials and Structures, 38, 163-171. https://doi.org/10.1007/BF02479341

Qian, X., Shen, B., Mu, B., & Li, Z. (2003). Enhancement of aging resistance of glass fiber reinforced cement. Materials and structures, 36, 323-329. https://doi.org/10.1617/13843

Rickard, C. (2015). GRC developments in Australia. GRCA congress 2015 proceedings.

Rothe, C., Gao, L. S., Plonka, R., & Mader, E. (2015). Nano surface structuring of alkali- resistant glass fibres for multifunctional effects. 1st International Conference Textile Reinforced Concrete. Leibniz Institute of Polymer Research Dresden, Germany.

SS 137244:1995. Concrete testing. Hardened concrete. Scaling at freezing.

Theodorakopoulos, D. D. (1995). Shrinkage behaviour of GRC Thin Sheets. Cement and Concrete Composites, 17, 229-238. https://doi.org/10.1016/0958-9465(95)00013-3

Zhu, W., & Bartos, M. J. (1997). Assessment of interfacial microstructure and bond properties in aged GRC using a novel microindetation method. Cement and Concrete Research, 27, 1701-1711. https://doi.org/10.1016/S0008-8846(97)00155-5

Zinck, P., Pays, M. F., Rezakhanlou, R., & Gerard, J. F. (1999). Mechanical characerisation of glass fibres as an indirect analysis of the effect of surface treatment. Journal of Materials Science, 34, 2121-2123. https://doi.org/10.1023/A:1004572112470