Analysis for symmetrical and asymmetrical loading of a single-span combined string steel structure
Abstract
The article consists of 3 parts. String analyzes with symmetrical loading, combined parametric analyzes of string structure with symmetrical loading and combined string structure analyzes with asymmetrical loading. Through various parameters, the influence of different parameters of the string on its behavior is revealed. The influence of prestressing in the combined string structure is also released. To assess the correctness of the results, an experimental study was carried out in the laboratory, after the structure was designed from steel elements.
First published online 20 January 2023
Keyword : steel bridge, symmetrical load, asymmetrical load, suspended cable, string, nonlinear analysis, displacements, strain, parametrical analysis
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Beivydas, E. (2019). A simplified calculation method for symmetrical loading of a single-span composite string steel structure. Engineering Structures and Technologies, 11(2), 70–73. https://doi.org/10.3846/est.2019.11323
Beivydas, E. (2022). Parametrical analysis for symmetrical loading of a single-span composite string steel structure. The Eurasia Proceedings of Science, Technology, Engineering & Mathematics (EPSTEM), 17, 90–101. https://doi.org/10.55549/epstem.1176065
Bleicher, A. (2011). Aktive Schwingungskontrolle einer Spannbandbrücke mit pneumatischen Aktuatoren [Von der Fakultät VI – Planen Bauen Umwelt der Technischen Universität Berlin zur Erlangung des akademischen Grades].
Chen, Z., Cao, H., Zhu, H., Hu, J., & Li, Sh. (2014). A simplified structural mechanics model for cable-truss footbridges and its implications for preliminary design. Engineering Structures, 68, 121–133. https://doi.org/10.1016/j.engstruct.2014.02.015
Gimsing, N. J. (1997). Cable supported bridges: Concept and design (2nd ed.). John Wiley & Sons.
Greco, L., Impollonia, N., & Cuomo, M. (2014). A procedure for the static analysis of cable structures following elastic catenary theory. International Journal of Solids and Structures, 51(7–8), 1521–1533. https://doi.org/10.1016/j.ijsolstr.2014.01.001
Juozapaitis, A., & Norkus, A. (2005). Shape determining of a loaded cable via total displacements. Technological and Economic Development of Economy, 11(4), 283–291. https://doi.org/10.3846/13928619.2005.9637709
Juozapaitis, A., Vainiunas, P., & Kaklauskas, G., (2006). A new steel structural system of a suspension pedestrian bridge. Journal of Constructional Steel Research, 62(12), 1257–1263. https://doi.org/10.1016/j.jcsr.2006.04.023
Kmet, S., & Kokorudova, Z. (2009). Non-linear closed form computational model of cable trusses. International Journal of Non-linear Mechanics, 44(7), 735–744. https://doi.org/10.1016/j.ijnonlinmec.2009.03.004
Kulbach, V. (1999). Half-span loading of cable structures. Journal of Constructional Steel Research, 49(2), 167–180. https://doi.org/10.1016/S0143-974X(98)00215-6
Sandovič, G., & Juozapaitis, A. (2012). The analysis of the behaviour of an innovative pedestrian steel bridge. Procedia Engineering, 40, 411–416. https://doi.org/10.1016/j.proeng.2012.07.117
Sandovič, G., Juozapaitis, A., & Kliukas, R. (2011). Simplified engineering method of suspension two-span pedestrian steel bridges with flexible and rigid cables under action of asymmetrical loads. The Baltic Journal of Road and Bridge Engineering, 6(4), 267–273. https://doi.org/10.3846/bjrbe.2011.34
Schlaich, M., Bogle, A., & Bleicher, A. (2011). Entwerfen und Konstruieren Massivbau. Institut fur Bauingenieurwesen Technische universitat Berlin.
Strasky, J. (2005). Stress-ribbon and supported cable pedestrian bridges. Thomas Telford Ltd.
Unitsky, A. (2006). String transport in questions and answers. Moscow. STU Ltd.