Various works have been carried out on both the physical and mechanical properties of rubberized concrete in previous research. But the chemical composition of rubberized concrete has not been fully investigated. The scanning electron microscopy (SEM) and energy-dispersive x-ray spectrum (EDX) analysis were used to determine the element composition and the peak intensity of chemical elements in the waste rubber concrete. The SEM and EDX analysis results showed that, ferrous iron, oxygen, calcium, and silicon were the dominant elements, and these elements reduced as more waste rubber were added to the concrete. Carbon and sulphur elements increased as rubber crumbs were added to the rubberized concrete. The work concluded that the presence of rubber crumb in the concrete samples contributed to both mechanical and chemical changes in the property of rubberized concrete.
Akinyele, J. O., Salim, R. W., & Kupolati, W. K. (2016). The impact of rubber crumb on the mechanical and chemical properties of concrete. Engineering Structures and Technologies, 7(4), 197-204. https://doi.org/10.3846/2029882X.2016.1152169
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in Engineering Structures and Technologies as Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.