The preliminary design and technical-economic efficiency of the two-level branched cable-stayed bridge
Abstract
An innovative steel cable-stayed pedestrian bridge structure and the preliminary design methodology are provided in this article. The advantages and disadvantages of the bridge design are presented. The comparative analysis of the innovative steel cable-stayed pedestrian bridge structure and a similar structure of a single pylon fan cable-stayed bridge with an 80 m span is provided, the main criteria are reviewed and conclusions are formulated. The main features of the innovative branched cable-stayed bridge behaviour are reviewed. An overview of technical-economic efficiency and conclusions are presented.
Keyword : cable-stayed bridge, nonlinear analysis, stress and strain state, technical-economic efficiency, innovative structure, preliminary design
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Ernst, H. J. (1965). Der E-Modul von Seilen unter Brucksichtigung des Durchhangers. Der Bauingenieur, 40(2), 52-55.
Freire, A. M. S., Negrao, J. H. O., & Lopes, A. V. (2006). Geometrical nonlinearities on the static analysis of highly flexible steel cable-stayed bridges. Computers and Structures, 84, 2128-2140. https://doi.org/10.1016/j.compstruc.2006.08.047
Ghali, A., & Neville, A. M. (1978). Structural analysis: a unified classical and matrix approach. London: Chapman & Hall.
Hagen, C., & Staroseek, U. (2002). Zur Vorbemessung von Schrägseilbrücken. Hamburg.
Hajdin, N., Michaltsos, G. T., & Konstantakopoulos, T. G. (1998). About the equivalent modulus of elasticity of cables of cablestayed bridges. The Scientific Journal FACTA UNIVERSITATIS (series Architecture and Civil Engineering), 1(5), 569-575.
Lietuvos Standartizacijos departamentas. (2006). Eurokodas 1. Poveikiai konstrukcijoms. 2 dalis. Tiltų eismo apkrovos (LST EN 1991-2:2006). Retrieved from https://www.lsd.lt/index.php?-393095731
Monaco, P. (1997). The tangent and secant modulus of cable stays with tension cables. Paper presented at the International Conference: New Technologies in Structural Engineering, 3–5 July, Lisbon, Portugal.
Nazmy, A. S., & Abdel-Ghaffar, A. M. (1990). Three-dimensional nonlinear static analysis of cable-stayed bridges. Computers and Structures, 34(2), 257-271. https://doi.org/10.1016/0045-7949(90)90369-D
Podolny, W. (2011). Cable-suspended bridges. Structural steel designer’s handbook. New-York City.
Stragys, M. (2018). Inovatyvaus šakotinio plieninio vantinio pėsčiųjų tilto lyginamoji analizė. Mokslas – Lietuvos ateitis / Science – Future of Lithuania, 10, 1-7. https://doi.org/10.3846/mla.2018.6260
Thai, H.-T., & Kim, S.-E. (2012). Second-order inelastic analysis of cable-stayed bridges. Finite Elements in Analysis and Design, 53, 48-55. https://doi.org/10.1016/j.finel.2011.07.002
Vega-Posada, C., Areiza-Hurtado, M., & Aristizabal-Ochoa, J. D. (2011). Large-deflection and post-buckling behavior of slender beam-columns with non-linear end-restraints. International Journal of Non-Linear Mechanics, 46, 79-95. https://doi.org/10.1016/j.ijnonlinmec.2010.07.006
Wang, P.-H., Lin, H.-T., & Tang, T.-Y. (2002). Study on nonlinear analysis of a highly redundant cable-stayed bridge. Computers and Structures, 80, 165-182. https://doi.org/10.1016/S0045-7949(01)00166-3