Share:


Statistical analysis of the Mariana Trench geomorphology using R programming language

Abstract

This paper introduces an application of R programming language for geostatistical data processing with a case study of the Mariana Trench, Pacific Ocean. The formation of the Mariana Trench, the deepest among all hadal oceanic depth trenches, is caused by complex and diverse geomorphic factors affecting its development. Mariana Trench crosses four tectonic plates: Mariana, Caroline, Pacific and Philippine. The impact of the geographic location and geological factors on its geomorphology has been studied by methods of statistical analysis and data visualization using R libraries. The methodology includes following steps. Firstly, vector thematic data were processed in QGIS: tectonics, bathymetry, geomorphology and geology. Secondly, 25 cross-section profiles were drawn across the trench. The length of each profile is 1000-km. The attribute information has been derived from each profile and stored in a table containing coordinates, depths and thematic information. Finally, this table was processed by methods of the statistical analysis on R. The programming codes and graphical results are presented. The results include geospatial comparative analysis and estimated effects of the data distribution by tectonic plates: slope angle, igneous volcanic areas and depths. The innovativeness of this paper consists in a cross-disciplinary approach combining GIS, statistical analysis and R programming.

Keyword : R, statistical analysis, programming, Mariana Trench, oceanography, geomorphology

How to Cite
Lemenkova, P. (2019). Statistical analysis of the Mariana Trench geomorphology using R programming language. Geodesy and Cartography, 45(2), 57-84. https://doi.org/10.3846/gac.2019.3785
Published in Issue
Sep 3, 2019
Abstract Views
2017
PDF Downloads
464
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Borradaile, G. J. (2003). Statistics of Earth science data. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-662-05223-5

Boston, B., Moore, G. F., Nakamura, Y., & Kodaira, S. (2017). Forearc slope deformation above the Japan Trench megathrust: Implications for subduction erosion. Earth and Planetary Science Letters, 462, 26-34. https://doi.org/10.1016/j.epsl.2017.01.005

Boutelier, D., Oncken, O., & Cruden, A. (2014). Trench-parallel shortening in the forearc caused by subduction along a sea-ward-concave plate boundary: In-sights from analogue modelling experiments. Tectonophysics, 611, 192-203. https://doi.org/10.1016/j.tecto.2013.11.028

Bretz, F., Hothorn, T., & Westfall, P. (2011). Multiple comparisons using R. Taylor and Francis Group, LLC.

Čížková, H., & Bina, C. R. (2015). Geodynamics of trench advance: Insights from a Philippine-Sea-style geometry. Earth and Planetary Science Letters, 430, 408-415. https://doi.org/10.1016/j.epsl.2015.07.004

Fernandez, M. O., & Marques, A. C. (2018). Combining bathymetry, latitude, and phylogeny to understand the distribution of deep Atlantic hydroids (Cnidaria). Deep-Sea Research Part I, 133, 39-48. https://doi.org/10.1016/j.dsr.2018.01.008

Freymuth, H., Vils, F., Willbold, M., Taylor, R., & Elliott, T. (2015). Molybdenum mobility and isotopic fractionation during subduction at the Mariana arc. Earth and Planetary Science Letters, 432, 176-186. https://doi.org/10.1016/j.epsl.2015.10.006

Gardner, J. V., Armstrong, A. A., Calder, B. R., & Beaudoin, J. (2014). So, how deep is the Mariana Trench? Marine Geodesy, 37(1), 1-13. https://doi.org/10.1080/01490419.2013.837849

Harris, P. T., Macmillan-Lawler, M., Rupp, J., & Baker, E. K. (2014). Geomorphology of the oceans. Marine Geology, 352, 4-24. https://doi.org/10.1016/j.margeo.2014.01.011

Ichino, M. C., Clark, M. R., Drazen, J. C., Jamieson, A., Jones, D. O. B., Martin, A. P., Rowden, A. A., Shank, T. M., Yancey, P. H., & Ruhl, H. A. (2015). The distribution of benthic biomass in hadal trenches: A modelling approach to investigate the effect of vertical and lateral organic matter transport to the seafloor. Deep-Sea Research I, 100, 21-33. https://doi.org/10.1016/j.dsr.2015.01.010

Journel, A. G. (2000). Fundamentals of geostatistics in five lessons. Short course in geology: Volume 8. Paper presented at the 28th International Geological Congress Washington, D.C. American Geophysical Union.

Kawabe, M. (1993). Deep water properties and circulation in the western North Pacific. In T. Teramoto (Ed.), Deep Ocean circulation: physical and chemical aspects (pp. 17-37). Elsevier Science. https://doi.org/10.1016/S0422-9894(08)71315-1

Kirby, S. H., Stein, S., Okal, E. A., & Rubie, D. C. (1996). Deep earthquakes and metastable phase transformations in subducting oceanic lithosphere. Reviews of Geophysics, 34, 261-306. https://doi.org/10.1029/96RG01050

Luo, M., Gieskes, J., Chen, L., Shi, X., & Chen, D. (2017). Provenances, distribution, and accumulation of organic matter in the southern Mariana Trench rim and slope: Implication for carbon cycle and burial in hadal trenches. Marine Geology, 386, 98-106. https://doi.org/10.1016/j.margeo.2017.02.012

Miller, M. S., Gorbatov, A., & Kennett, B. L. N. (2005). Heterogeneity within the subducting Pacific slab beneath the Izu–Bonin–Mariana arc: Evidence from tomography using 3D ray tracing inversion techniques. Earth and Planetary Science Letters, 235, 331-342. https://doi.org/10.1016/j.epsl.2005.04.007

Miller, M., Kennett, B., & Lister, G. (2004). Imaging changes in morphology, geometry, and physical properties of the subducting Pacific plate along the Izu–Bonin–Mariana arc. Earth and Planetary Science Letters, 224, 363-370. https://doi.org/10.1016/j.epsl.2004.05.018

Murray, H. W. (1945). Profiles of the Aleutian Trench. Bulletin of the Geological Society of America, 56, 757-782. https://doi.org/10.1130/0016-7606(1945)56[757:POTAT]2.0.CO;2

Nakanishi, M., & Hashimoto, J. (2011). A precise bathymetric map of the world’s deepest seafloor, Challenger Deep in the Mariana Trench. Marine Geophysical Researches, 32(4), 455-463. https://doi.org/10.1007/s11001-011-9134-0

Nakanishi, M., Tamaki, K., & Kobayashi, K. (1992). Magnetic anomaly lineations from Late Jurassic to Early Cretaceous in the west-central Pacific Ocean. Geophysical Journal International, 109(3), 701-719. https://doi.org/10.1111/j.1365-246X.1992.tb00126.x

Ogawa, Y., Kobayashi, K., Hotta, H., & Fujioka, K. (1997). Tension cracks on the oceanward slopes of the northern Japan and Mariana Trenches. Marine Geology, 141, 111-123. https://doi.org/10.1016/S0025-3227(97)00059-5

Swan, A. R. H., & Sandilands, M. (1995). Introduction to geological data analysis. Blackwell Science.

Taira, K., Kitagawa, S., Yamashiro, T., & Yanagimoto, D. (2004). Deep and bottom currents in the Challenger Deep, Mariana Trench, measured with super-deep current meters. Journal of Oceanography, 60(6), 919-926. https://doi.org/10.1007/s10872-005-0001-y

Van Rijsingen, E., Lallemand, S., Peyret, M., Arcay, D., Heuret, A., Funiciello, F., & Corbi, F. (2018). How subduction interface roughness influences the occurrence of large interplate earthquakes. Geochemistry, Geophysics, Geosystems, 19, 1-29. https://doi.org/10.1029/2018GC007618

Warren, B. A., & Owens, W. B. (1988). Deep currents in the central subarctic Pacific Ocean. Journal of Physical Oceanography, 18, 529-551. https://doi.org/10.1175/1520-0485(1988)018< 0529:DCITCS>2.0.CO;2

Yoshida, M. (2017). Trench dynamics: Effects of dynamically migrating trench on subducting slab morphology and characteristics of subduction zones systems. Physics of the Earth and Planetary Interiors, 268, 35-53. https://doi.org/10.1016/j.pepi.2017.05.004

Yoshikawa, S., Okino, K., & Asada, M. (2012). Geomorphological variations at hydrothermal sites in the southern Mariana Trough: Relationship between hydrothermal activity and topographic characteristics. Marine Geology, 303-306, 172-182. https://doi.org/10.1016/j.margeo.2012.02.013

Yoshioka, S., Torii, Y., & Riedel, M. R. (2015). Impact of phase change kinetics on the Mariana slab within the framework of 2-D mantle convection. Physics of the Earth and Planetary Interiors, 240, 70-81. https://doi.org/10.1016/j.pepi.2014.12.001

Zhang, F., Lin, J., & Zhan, W. (2014). Variations in oceanic plate bending along the Mariana trench. Earth and Planetary Science Letters, 401, 206-214. https://doi.org/10.1016/j.epsl.2014.05.032

Zhou, Z., Lin, J., & Behn, M. D. (2015). Mechanism for normal faulting in the subducting plate at the Mariana Trench. Geophysical Research Letters, 42, 4309-4317. https://doi.org/10.1002/2015GL063917