Share:


Failure analysis around oriented boreholes using an analytical model in different faulting stress regimes

    Ali Lakirouhani   Affiliation
    ; Sahar Ghorbannezhad Affiliation
    ; Jurgis Medzvieckas Affiliation
    ; Romualdas Kliukas Affiliation

Abstract

One of the most important instabilities that may occur in a borehole is shear instability caused by high compressive stress in the borehole wall. The initial estimation of the width and depth of the failure zone around the borehole is very important in the field. In inclined boreholes, the shear instability or borehole breakout is affected by the in situ stress regime, the deviation angle of the borehole, the mechanical properties of the rock and the effect of the intermediate principal stress. In this article, an analytical model based on theory of elasticity is presented to find the breakout failure area around the inclined boreholes. Mogi-Coulomb shear failure criterion is used, in which there is also the effect of the intermediate principal stress. This model examines the failure in three-dimensional elements around the borehole for different in situ stress regime. The main finding of the analysis done in this article is that not only the deviation angle of the borehole but also the in situ stress regime has a great effect on the dimensions of the breakout. Also, the plane where the deviation angle of the borehole changes, affects the dimensions of the breakout.

Keyword : strike-slip faulting stress regime, normal faulting stress regime, reverse faulting stress regime, angle of orientation, shear failure, borehole breakout

How to Cite
Lakirouhani, A., Ghorbannezhad, S., Medzvieckas, J., & Kliukas, R. (2023). Failure analysis around oriented boreholes using an analytical model in different faulting stress regimes. Journal of Civil Engineering and Management, 29(4), 360–371. https://doi.org/10.3846/jcem.2023.18854
Published in Issue
Apr 5, 2023
Abstract Views
402
PDF Downloads
334
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Al-Ajmi, A., & Zimmerman, R. (2006a). A new 3D stability model for the design of non-vertical wellbores [Paper presentation]. The Golden Rocks 2006, The 41st U.S. Symposium on Rock Mechanics (USRMS), Colorado, USA.

Al-Ajmi, A. M., & Zimmerman, R. W. (2006b). Stability analysis of vertical boreholes using the Mogi–Coulomb failure criterion. International Journal of Rock Mechanics and Mining Sciences, 43(8), 1200–1211. https://doi.org/10.1016/j.ijrmms.2006.04.001

Bahrehdar, M., & Lakirouhani, A. (2022). Evaluation of the depth and width of progressive failure of breakout based on different failure criteria, using a finite element numerical model. Arabian Journal for Science and Engineering, 47, 11825–11839. https://doi.org/10.1007/s13369-022-06640-9

Bahrehdar, M., & Lakirouhani, A. (2023). Effect of eccentricity on breakout propagation around noncircular boreholes. Advances in Civil Engineering, 2023, 6962648. https://doi.org/10.1155/2023/6962648

Bell, J. S., & Gough, D. I. (1979). Northeast-southwest compressive stress in Alberta evidence from oil wells. Earth and Planetary Science Letters, 45(2), 475–482. https://doi.org/10.1016/0012-821X(79)90146-8

Cerasi, P., Papamichos, E., & Stenebråten, J. F. (2005). Quantitative sand-production prediction: Friction-dominated flow model. In SPE Latin American and Caribbean Petroleum Engineering Conference (No. SPE-94791-MS), Rio de Janeiro, Brazil. https://doi.org/10.2118/94791-MS

Cook, B. K., Lee, M. Y., DiGiovanni, A. A., Bronowski, D. R., Perkins, E. D., & Williams, J. R. (2004). Discrete element modeling applied to laboratory simulation of near-wellbore mechanics. International Journal of Geomechanics, 4(1), 19–27. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:1(19)

Cuss, R. J., Rutter, E. H., & Holloway, R. F. (2003). Experimental observations of the mechanics of borehole failure in porous sandstone. International Journal of Rock Mechanics and Mining Sciences, 40(5), 747–761. https://doi.org/10.1016/S1365-1609(03)00068-6

Ewy, R. T., & Cook, N. G. W. (1990). Deformation and fracture around cylindrical openings in rock – I. Observations and analysis of deformations. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 27(5), 387–407. https://doi.org/10.1016/0148-9062(90)92713-O

Gough, D. I., & Bell, J. S. (1982). Stress orientations from borehole wall fractures with examples from Colorado, East Texas, and Northern Canada. Canadian Journal of Earth Sciences, 19(7), 1358–1370. https://doi.org/10.1139/e82-118

Haimson, B. (2007). Micromechanisms of borehole instability leading to breakouts in rocks. International Journal of Rock Mechanics and Mining Sciences, 44(2), 157–173. https://doi.org/10.1016/j.ijrmms.2006.06.002

Haimson, B. C., & Herrick, C. G. (1986). Borehole breakouts-a new tool for estimating in situ stress?. In Proceedings of the International Symposium on Rock Stress and Rock Stress Measurements (pp. 271–280), Stockholm, Sweden.

Haimson, B., & Kovacich, J. (2003). Borehole instability in high-porosity Berea sandstone and factors affecting dimensions and shape of fracture-like breakouts. Engineering Geology, 69(3), 219–231. https://doi.org/10.1016/S0013-7952(02)00283-1

Haimson, B., & Lee, H. (2004). Borehole breakouts and compaction bands in two high-porosity sandstones. International Journal of Rock Mechanics and Mining Sciences, 41(2), 287–301. https://doi.org/10.1016/j.ijrmms.2003.09.001

Haimson, B. C., & Song, I. (1993). Laboratory study of borehole breakouts in Cordova Cream: a case of shear failure mechanism. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30(9), 1047–1056. https://doi.org/10.1016/0148-9062(93)90070-T

Haimson, B. C., & Song, I. (1998). Borehole breakouts in Berea sandstone: Two porosity-dependent distinct shapes and mechanisms of formation. In The SPE/ISRM Rock Mechanics in Petroleum Engineering (No. SPE-47249-MS), Trondheim, Norway. https://doi.org/10.2118/47249-MS

Herrick, C. G., & Haimson, B. C. (1994). Modeling of episodic failure leading to borehole breakouts in Alabama limestone. In Proceedings of the 1st North American Rock Mechanics Symposium, Rock Mechanics: Models and measurements (pp. 217–224). Balkema, Austin, Rotterdam.

Hickman, S. H., Healy, J. H., & Zoback, M. D. (1985). In situ stress, natural fracture distribution, and borehole elongation in the Auburn Geothermal Well, Auburn, New York. Journal of Geophysical Research, 90(B7), 5497–5512. https://doi.org/10.1029/JB090iB07p05497

Jolfaei, S., & Lakirouhani, A. (2022). Sensitivity analysis of effective parameters in borehole failure, using neural network. Advances in Civil Engineering, 2022, 4958004. https://doi.org/10.1155/2022/4958004

Klaetsch, A. R., & Haimson, B. C. (2002). Porosity-dependent fracture-like breakouts in St. Peter sandstone. In R. Hammah, W. Bawden, J. Curran, & M. Telesnicki (Eds.), Proceedings of the 5th NARMS-TAC Conference. Mining and tunneling: innovation and opportunity (pp. 1365–1371). University of Toronto, Toronto, Canada.

Lakirouhani, A., Bahrehdar, M., Medzvieckas, J., & Kliukas, R. (2021). Comparison of predicted failure area around the boreholes in the strike-slip faulting stress regime with Hoek-Brown and Fairhurst generalized criteria. Journal of Civil Engineering and Management, 27(5), 346–354. https://doi.org/10.3846/jcem.2021.15020

Lakirouhani, A., & Hasanzadehshooiili, H. (2011). Review of rock strength criteria. In Proceedings of the 22nd World Mining Congress & Expo (pp. 473–482), Istanbul, Turkey.

Lee, M., & Haimson, B. (1993). Laboratory study of borehole breakouts in Lac du Bonnet granite: A case of extensile failure mechanism. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30(7), 1039–1045. https://doi.org/10.1016/0148-9062(93)90069-P

Li, L., Papamichos, E., & Cerasi, P. (2006). Investigation of sand production mechanisms using DEM with fluid flow. In A. V. Cotthem, R. Charlier, J. F. Thimus, & J. P. Tshibangu (Eds.), Eurock 2006: Multiphysics coupling and long term behaviour in rock mechanics: Proceedings of the International Symposium of the International Society for Rock Mechanics (pp. 241–247). Taylor & Francis. https://doi.org/10.1201/9781439833469.ch33

Li, X., El Mohtar, C. S., & Gray, K. E. (2019). 3D poro-elasto-plastic modeling of breakouts in deviated wells. Journal of Petroleum Science and Engineering, 174, 913–920. https://doi.org/10.1016/j.petrol.2018.11.086

Manshad, A. K., Jalalifar, H., & Aslannejad, M. (2014). Analysis of vertical, horizontal and deviated wellbores stability by analytical and numerical methods. Journal of Petroleum Exploration and Production Technology, 4(4), 359–369. https://doi.org/10.1007/s13202-014-0100-7

Mastin, L. G. (1984). The development of borehole breakouts in sandstone [Doctoral dissertation]. Stanford University, California, USA.

Meier, T., Rybacki, E., Reinicke, A., & Dresen, G. (2013). Influence of borehole diameter on the formation of borehole breakouts in black shale. International Journal of Rock Mechanics and Mining Sciences, 62, 74–85. https://doi.org/10.1016/j.ijrmms.2013.03.012

Papamichos, E. (1999). Sand production and well productivity in conventional reservoirs. In Vail Rocks 1999, The 37th U.S. Symposium on Rock Mechanics (USRMS) (No. ARMA-99-0209), Vail, Colorado, USA.

Papamichos, E., Tronvoll, J., Skjærstein, A., & Unander, T. E. (2010). Hole stability of Red Wildmoor sandstone under anisotropic stresses and sand production criterion. Journal of Petroleum Science and Engineering, 72(1), 78–92. https://doi.org/10.1016/j.petrol.2010.03.006

Potyondy, D. O., & Cundall, P. A. (2004). A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 41(8), 1329–1364. https://doi.org/10.1016/j.ijrmms.2004.09.011

Rahmati, H., Nouri, A., Chan, D., & Vaziri, H. (2021). Relationship between rock macro-and micro-properties and wellbore breakout type. Underground Space, 6(1), 62–75. https://doi.org/10.1016/j.undsp.2019.10.001

Setiawan, N. B., & Zimmerman, R. W. (2022). Semi-analytical method for modeling wellbore breakout development. Rock Mechanics and Rock Engineering, 55(5), 2987–3000. https://doi.org/10.1007/s00603-022-02850-7

Shamir, G., & Zoback, M. D. (1992). Stress orientation profile to 3.5 km depth near the San Andreas Fault at Cajon Pass, California. Journal of Geophysical Research: Solid Earth, 97(B4), 5059–5080. https://doi.org/10.1029/91JB02959

Song, I. (1998). Borehole breakouts and core disking in Westerly granite: Mechanisms of formation and relationship to in situ stress [PhD thesis]. University of Wisconsin, Madison, USA.

Tronvoll, J., & Fjær, E. (1994). Experimental study of sand production from perforation cavities. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 31(5), 393–410. https://doi.org/10.1016/0148-9062(94)90144-9

Valkó, P., & Economides, M. J. (1995). Hydraulic fracture mechanics. John Wiley & Sons.

Van den Hoek, P. J. (2001). Prediction of different types of cavity failure using bifurcation theory. In DC Rocks 2001, The 38th U.S. Symposium on Rock Mechanics (USRMS) (No. ARMA-01-0045), Washington, D.C., USA.

Zang, A., & Stephansson, O. (Eds.). (2010). Stress field of the earth’s crust. Springer, Dordrecht, Heidelberg, New York. https://doi.org/10.1007/978-1-4020-8444-7

Zoback, M. D., Moos, D., Mastin, L., & Anderson, R. N. (1985). Wellbore breakouts and in situ stress. Journal of Geophysical Research: Solid Earth, 90(B7), 5523–5530. https://doi.org/10.1029/JB090iB07p05523