Share:


Bioremediation: the eco-friendly solution to the hazardous problem of environmental pollution

    Susmita Mukherjee Affiliation
    ; Rajiv Narula Affiliation
    ; Shreya Bhattacharjee Affiliation
    ; Debankita Dutta Affiliation
    ; Indrani Bose Affiliation
    ; Jitesh Mahakud Affiliation
    ; Sharanya Paul Affiliation
    ; Sourish Bhattacharjee Affiliation
    ; Sonali Paul Affiliation

Abstract

Bioremediation is a technique to enhance natural biological processes to rectify polluted groundwater, soil, and even entire habitats. Bioremediation techniques use biological agents to act upon hazardous, toxic materials and subsequently convert them into less toxic substances.
Microbes are organisms ubiquitously present in the biosphere. These microorganisms are the main agents that remediate toxic and polluted environmental conditions. Highly polluted areas can be rectified using proper bioremediation procedures and interventions. In this review we have studied the different bioremediation techniques which can be utilized to correct the harmful effects of environmental pollution. In this study we have also emphasized on the benefits of adopting bioremediation as an efficient alternative technique in comparison to the traditional physical and chemical methods to restore the healthy environmental conditions.

Keyword : environmental pollution, environmental sustainability, bioremediation, microorganisms, environment monitoring

How to Cite
Mukherjee, S., Narula, R., Bhattacharjee, S., Dutta, D., Bose, I., Mahakud, J., Paul, S., Bhattacharjee, S., & Paul, S. (2021). Bioremediation: the eco-friendly solution to the hazardous problem of environmental pollution. Journal of Environmental Engineering and Landscape Management, 29(4), 477–483. https://doi.org/10.3846/jeelm.2021.14439
Published in Issue
Dec 17, 2021
Abstract Views
900
PDF Downloads
771
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Abdul-Wahab, M. F. (2015). Photosynthetic bacteria: An eco-friendly and cheap tool for bioremediation. Reviews in Environmental Science and Bio/Technology, 14(2), 271–285. https://doi.org/10.1007/s11157-014-9355-1

Adesiyan, I. M., Bisi-Johnson, M., Aladesanmi, O. T., Okoh, A. I., & Ogunfowokan, A. O. (2018). Concentrations and human health risk of heavy metals in rivers in Southwest Nigeria. Journal of Health and Pollution, 8(19), 180907. https://doi.org/10.5696/2156-9614-8.19.180907

Arnon S., Packman, A. I., Peterson, C. G., & Gray, K. A. (2007). Effects of overlying velocity on periphyton structure and denitrification. Journal of Geophysical Research, 112 (G1).

Atlas, R. M., & Hazen, T. C. (2011). Oil biodegradation and bioremediation: A tale of the two worst spills in U.S. history. Environmental Science & Technology, 45(16), 6709–6715. https://doi.org/10.1021/es2013227

Aydin, D. C., & Icgen, B. (2018). Gas chromatographic analyses of kerosene bioremediation displayed distinctive pattern of n-alkane degradation. Petroleum Science and Technology, 36(22), 1905–1912. https://doi.org/10.1080/10916466.2018.1517170

Azim, E. (2009). Photosynthetic periphyton and surfaces. In Encyclopedia of Inland Waters (pp. 184–191). Academic Press. https://doi.org/10.1016/B978-012370626-3.00144-7

Azubuike, C. C., Chikere, C. B., & Okpokwasili, G. C. (2016). Bioremediation techniques–classification based on site of application: Principles, advantages, limitations and prospects. World Journal of Microbiology and Biotechnology, 32, 180. https://doi.org/10.1007/s11274-016-2137-x

Barr, D., Finnamore, J. R., Bardos, R. P., Weeks, J. M., & Nathanail, C. P (2002). Biological methods for assessment and remediation of contaminated land: Case studies. Construction Industry Research and Information Association.

Bradac, P., Wagner, B., Kistler, D., Traber, J., Behra, R., & Sigg, L. (2010). Cadmium speciation and accumulation in periphyton in a small stream with dynamic concentration variations. Environmental Pollution, 158(3), 641–648. https://doi.org/10.1016/j.envpol.2009.10.031

Brusseau, M. L. (2019). Soil and groundwater remediation. In Environmental and pollution science (3rd ed., pp. 329–354). Academic Press. https://doi.org/10.1016/B978-0-12-814719-1.00019-7

Chen, B., Ye, X., Zhang, B., Jing, L., & Lee, K. (2019). Marine oil spills – preparedness and countermeasures. In World seas: An environmental evaluation. Volume III: Ecological issues and environmental impacts (2 ed., pp. 407–426). Academic Press. https://doi.org/10.1016/B978-0-12-805052-1.00025-5

Dana, L. D., & Bauder, J. W. (2011). A general essay on bioremediation of contaminated soil. Montana State University.

de Lorenzo, V. (2008). Systems biology approaches to bioremediation. Current Opinion in Biotechnology, 19(6), 579–589. https://doi.org/10.1016/j.copbio.2008.10.004

Delille, D., Pelletier, E., Rodriguez-Blanco, A., & Ghiglione, J. F. (2009). Effects of nutrient and temperature on degradation of petroleum hydrocarbons in sub-Antarctic coastal Seawater. Polar Biology, 32, 1521–1528. https://doi.org/10.1007/s00300-009-0652-z

Frutos, F. J. G., Pérez, R., Escolano, O., Rubio, A., Gimeno, A., Fernandez, M. D., Carbonell, G., Perucha, C., & Laguna, J. (2012). Remediation trials for hydrocarbon-contaminated sludge from a soil washing process: Evaluation of bioremediation technologies. Journal of Hazardous Materials, 199–200, 262–271. https://doi.org/10.1016/j.jhazmat.2011.11.017

Gadd, G. M. (2010). Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology, 156(3), 609–643. https://doi.org/10.1099/mic.0.037143-0

Gouma, S., Fragoeiro, S., Bastos, A. C., & Magan, N. (2014). Bacterial and fungal bioremediation strategies. In Microbial Degradation and Bioremediation (pp. 301–323). Elsevier. https://doi.org/10.1016/B978-0-12-800021-2.00013-3

Gray, J. S. (2002). Biomagnification in marine systems: The perspective of an ecologist. Marine Pollution Bulletin, 45(1–12), 46–52. https://doi.org/10.1016/S0025-326X(01)00323-X

Gupta, S., & Pathak, B. (2020). Mycoremediation of polycyclic aromatic hydrocarbons. In Abatement of environmental pollutants: Trends and strategies (pp. 127–149). Elsevier. https://doi.org/10.1016/B978-0-12-818095-2.00006-0

Hazen, T. C. (2010). Cometabolic bioremediation. In Handbook of hydrocarbon and lipid microbiology (pp. 2505–2514). Springer. https://doi.org/10.1007/978-3-540-77587-4_185

Herrero, M., & Stuckey, D. (2015). Bioaugmentation and its application in wastewater treatment: A review. Chemosphere, 140, 119–128. https://doi.org/10.1016/j.chemosphere.2014.10.033

Jan, S., Rashid, B., Azooz, M. M., Hossain, M. A., & Ahmad, P. (2016). Genetic strategies for advancing phytoremediation potential in plants: A recent update. In Plant metal interaction: Emerging remediation techniques (pp. 431–454). Elsevier. https://doi.org/10.1016/B978-0-12-803158-2.00017-5

Kanavillil, N., & Kurissery, S. (2013). Temporal variation of periphyton communities: A 3-year study from northwest Lake Simcoe, Ontario, Canada. Inland Waters, 3(4), 473–486. https://doi.org/10.5268/IW-3.4.525

Karigar, C. S., & Rao, S. S. (2011). Role of microbial enzymes in the bioremediation of pollutants: A review. Enzyme Research, 2011(1), 1–11. https://doi.org/10.4061/2011/805187

Leung, M. (2004). Bioremediation: Techniques for cleaning up a mess. Journal of Biotechnology, 2, 18–22.

Mackay, D., & Fraser, A. (2000). Bioaccumulation of persistent organic chemicals: Mechanisms and models. Environmental Pollution, 110(3), 375–391. https://doi.org/10.1016/S0269-7491(00)00162-7

McCutcheon, S. C., & Jørgensen, S. E. (2008). Phytoremediation. In Encyclopedia of ecology (pp. 2751–2766). Academic Press. https://doi.org/10.1016/B978-008045405-4.00069-0

Nielsen, J. (2003). Metabolic engineering. In Encyclopaedia of physical science and technology (3rd ed., pp. 391–406). Academic Press. https://doi.org/10.1016/B0-12-227410-5/00422-1

Pointing, S. B. (2001). Feasibility of bioremediation by white-rot fungi. Applied Microbiology and Biotechnology, 57(1–2), 20–33. https://doi.org/10.1007/s002530100745

Pushpanathan, M., Jayashree, S., Gunasekharan, P., & Rajendhran, J. (2014). Microbial bioremediation: A metagenomic approach. In Microbial Biodegradation and Bioremediation (pp. 407–419). Elsevier. https://doi.org/10.1016/B978-0-12-800021-2.00017-0

Rai, P. K., & Chutia, B. M. (2016). Particulate Matter bio-monitoring through magnetic properties of an Indo-Burma hotspot region. Chemistry and Ecology, 32(6), 1–13. https://doi.org/10.1080/02757540.2016.1157173

Singh, P., Singh, V. K., Singh, R., Borthakur, A., Madhav, S., Ahamad, A., Kumar, A., Pal, D. B., Tiwary, D., & Mishra, P. K. (2020a). Bioremediation: A sustainable approach for management of environmental contaminants. In Abatement of environmental pollutants: Trends and strategies (pp. 1–23). Elsevier. https://doi.org/10.1016/B978-0-12-818095-2.00001-1

Singh, T., Bhatiya, A. K., Mishra, P. K., & Srivastava, N. (2020b). An effective approach for the degradation of phenolic waste: phenols and cresols. In Abatement of environmental pollutants: Trends and strategies (pp. 203–243). https://doi.org/10.1016/B978-0-12-818095-2.00011-4

Skipper, H. D., & Turco, R. F. (Eds.). (1995). Bioremediation: Science and applications: Vol. 43. SSSA special publication. Soil Science Society of America. John Wiley & Sons, Inc.

Small, A., Bunn, A., McKinstry, C., Peacock, A., & Mi­racle, A. L. (2008). Investigating freshwater periphyton community response to uranium with phospholipid fatty acid and denaturing gradient gel electrophoresis analyses. Journal of Environmental Radioactivity, 99(4), 730–738. https://doi.org/10.1016/j.jenvrad.2007.09.009

Speight, J. G. (2020). Natural water remediation: Chemistry and technology. Elsevier. https://doi.org/10.1016/B978-0-12-803810-9.00001-2

Vidali, M. (2001). Bioremediation. An overview. Pure and Applied Chemistry, 73(7), 1163–1172. https://doi.org/10.1351/pac200173071163

Wu, Y., Xia, L., Yu, Z., Shabbir, S., & Kerr, P. G. (2014). In situ bio­remediation of surface waters by periphytons. Bioresource Technlogy, 151, 367–372. https://doi.org/10.1016/j.biortech.2013.10.088

Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Notices, 2011, 402647. https://doi.org/10.5402/2011/402647

Zhong, W., Zhao, W., & Song, J. (2020). Responses of periphyton microbial growth, activity, and pollutant removal efficiency to Cu exposure. International Journal of Environmental Research and Public Health 17(3), 941. https://doi.org/10.3390/ijerph17030941

Zouboulis, A. I., & Moussas, P. A. (2011). Groundwater and soil pollution: Bioremediation. In Encyclopaedia of Environmental Health (pp. 1037–1044). Elsevier. https://doi.org/10.1016/B978-0-444-52272-6.00035-0