Numerical modeling of particles movements in acoustic field
Abstract
Numerical simulation of the acoustic agglomeration of micron-sized mono-dispersed aerosol particles is demonstrated in the article. The forces acting the moving particle into the moving fluid as well as the coordinates and velocities of the particles are described by the differential equations. Having calculated results it is concluded that the agglomeration time of the two identical particles decreases mainly due to the introduction of other particles into the multilayer system.
Article in Lithuanian.
Dalelių judėjimo akustiniame lauke skaitinis modeliavimas
Keyword : acoustic aglomeration, aerosol particles, DEM
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Deen, N. G.; Van Sint Annaland, M.; Van der Hoef, M. A.; Kuipers, J. A. M. 2007. Review of discrete particle modeling of fluidized beds, Chemical Engineering Science 62(1–2): 28–44. https://doi.org/10.1016/j.ces.2006.08.014
Europos Parlamento ir Tarybos Direktyva 2003/35/EB [interaktyvus]. 2003 [žiūrėta 2018 m. sausio 9 d.]. Prieiga per internetą: http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+REPORT+A8–2015–0249+0+DOC+XML+V0//LT
Hoffmann, T. L. 2000. Environmental implications of acoustic aerosol agglomeration, Ultrasonics 38(1–8): 353–357. https://doi.org/10.1016/S0041–624X(99)00184–5
Yao, Y. 2016. Research and applications of ultrasound in HVAC field: a review, Renewable and Sustainable Energy Reviews 58(May 2016): 52–68. https://doi.org/10.1016/j.rser.2015.12.222
Yazdchi, K.; Luding, S. 2012. Towards unified drag laws for inertial flow through fibrous materials, Chemical Engineering Journal 207–208: 35–48. https://doi.org/10.1016/j.cej.2012.06.140
Kačianauskas, R.; Maknickas, A.; Vainorius, D. 2017. DEM analysis of acoustic wake agglomeration for mono-sized mi-croparticles in the presence of gravitational effects, Granular matter 19: 1–12. https://doi.org/10.1007/s10035–017–0726–5
Maxey, M. R.; Riley, J. J. 1983. Equation of motion for a small rigid sphere in a nonuniform flow, Physics of Fluids 26(4): 883–889. https://doi.org/10.1063/1.864230
Mikhailov, M. D.; Freire, A. P. S. 2013. The drag coefficient of a sphere: an approximation using Shanks transform, Powder Technology 237(March 2013): 432–435. https://doi.org/10.1016/j.powtec.2012.12.033
Omidvarborna, H.; Kumar, A.; Kim, D. 2015. Recent studies on soot modeling for diesel combustion, Renewable and Sustainable Energy Reviews 48(2015): 635–647. https://doi.org/10.1016/j.rser.2015.04.019
Tiwary, R.; Reethof, G. 1986. Hydrodynamic interaction of spherical aerosol particles in a high intensity acoustic field, Journal of Sound and Vibration 108(1): 33–49. https://doi.org/10.1016/S0022–460X(86)80309–1
Zaidi, A. A.; Tsuji, T.; Tanaka, T. 2015. Hindered settling velocity & structure formation during particle settling by direct numerical simulation, Procedia Engineering 102(2015): 1656–1666. https://doi.org/10.1016/j.proeng.2015.01.302
Zhou, D.; Luo, Z.; Jiang, J.; Chen, H.; Lu, M.; Fang, M. 2016. Experimental study on improving the efficiency of dust removers by using acoustic agglomeration as pretreatment, Powder Technology 289 (February 2016): 52–59. https://doi.org/10.1016/j.powtec.2015.11.009
Xiang, L.; Shuyan, W.; Huilin, L.; Goudong, L.; Juhui, C.; Yikun, L. 2010. Numerical simulation of particle motion in vibrated fluidized beds, Powder Technology 197(1–2): 25–35. https://doi.org/10.1016/j.powtec.2009.08.016