Assessment of the reliability of the reinforced concrete layer in structures
Abstract
An urgency to use probability-based methods and probabilistic reliability indices in long-term quality assessments and predictions of reinforced concrete products and structures is under consideration. Carbonation nature and depth of protective concrete covers of reinforcement bars and stirrups are analysed. Effect of water-cement ratio on the carbonation rate of protective concrete covers is discussed. Analyzes of reliability of structures reinforcement with composite as spiral (transverse) usage and influence. Presented applied equations and the calculation example demonstrate a simplicity and necessities of probability-based methods.
Article in Lithuanian.
Kompozitine armatūra armuotų konstrukcijų apsauginio betono sluoksnio patikimumo vertinimas
Santrauka
Svarstoma galimybė taikyti tikimybe pagrįstus metodus bei tikimybinius patikimumo rodiklius gelžbetoninių gaminių ir konstrukcijų ilgaamžiškumui bei patikimumui vertinti. Tikimybiniais metodais analizuojamas gelžbetoninių konstrukcijų apsauginio betoninio sluoksnio patikimumas. Analizuojamas vandens ir cemento santykio betono mišinyje bei kitų veiksnių poveikis apsauginių betono dangų karbonizacijos greičiui. Aptariamas kompozitinės kaip skersinės armatūros naudojimas konstrukcijoms armuoti bei jos įtaka konstrukcijų patikimumui ir ilgaamžiškumui. Pateiktas taikomojo skaičiavimo pavyzdys rodo tikimybinių metodų paprastumą ir būtinybę.
Reikšminiai žodžiai: karbonizacija, betoninis apsauginis sluoksnis, patikimumas, kompozitinė armatūra.
Keyword : carbonization, concrete protective layer, reliability, composite reinforcement
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Brühwiler, E., Denarié, E., Urlau, U., Hasler, S., & Peter, H. (2002). Betonstahl mit erhöhten Korrosionswiderstand. Beton und Stahlbetonbau, 5, 209–248. https://doi.org/10.1002/best.200201070
CEB-FIP Model Code. (1990). Design Code (437 p.). Thomas Telford, Lausanne.
CEB Bulletin 238. (1997). New approach in durability design (138 p.). Sprint-Druck.
COST Action Cl2. (2003). Improvement of buildings structural quality by new technologies. In Proceedings of the International Seminar (138 p.). Lisbon.
Faber, M. H., & Rostam, S. (2001). Durability and service life of concrete structures – the owner’s perspective. In International Conference on Safety, Risk, Reliability-Trends in Engineering (pp. 369–374). Malta.
Kliukas, R., Daniūnas, A., Gribniak, V., Lukoševičienė, O., Vanagas, E., & Patapavičius, A. (2018). Half a century of reinforced concrete electric poles maintenance: inspection, field-testing, and performance assessment. Structure and Infrastructure Engineering, 14(9), 1221–1232. https://doi.org/10.1080/15732479.2017.1402068
Kudzys, A. (2003). Structural quality improvement in design processes. Qualité et Sûreté de Fonctionnement (pp. 62–67). Actes du Congrès Nancy – France.
ISO 2394:1998. (1998). General principles on reliability for structures. 73 p.
Young-Jun, Y., Ki-Tae, P., Dong-Woo, S., & Ji-Hyun, H. (2015). Tensile Strength of GFRP reinforcing Bars with Hollow section, Hindawi Publishing Corporation. Advances in Materials Science and Engineering, 2015, Article ID 621546, 8.
JCSS. (2000). Probabilistic model code: Part 1 – basic of design Joint Committee on structural safety.
Lawanwisut, W., Li, C. Q., Dessa, A., & Chen Z. (2003). Serviceability assessment of deteriorating reinforced concrete structures. In F. Bontempi et al. (Eds.), Lisse system-based visio for strategic and creative design (Vol. 2, pp. 1803–1809). CRC Press.
Leira, B., Lindgrâd, A., Nesje, A., Sund, E., & Saegrov, S. (1999). Degradation analysis by statistical methods. In In M. A. Laçasse, & D. J. Vanier (Eds.), Durability of building materials and components (Vol. 8, pp. 1439–1446). Ottawa, Canada.
Vanagas, E., Kliukas, R., Lukoševičienė, O., Maruschak, P., Patapavičius, A. ir Juozapaitis, A. (2017). A feasibility study of using composite reinforcement in transport and power industry structures. Transport, 32(3), 321–329. https://doi.org/10.3846/16484142.2017.1342689