Determination and modelling of bond properties of synthetic macro-fibres in concrete
Abstract
Bond behaviour of a synthetic macro-fibre in concrete is the object of this research. The bond strength and stiffness are the parameters characterising the bonding mechanism that determines the efficiency of the reinforcing material. However, there is no general methodology developed to evaluate fibre efficiency. There also exists neither a straightforward procedure to estimate the bond quality of a synthetic macro-fibre nor a reliable numerical model to simulate the bond behaviour of such fibres. In this work, the bond mechanisms of 40 mm long synthetic macro-fibres are investigated using pull-out tests: 16 concrete cubes were made for that purpose. One type of synthetic macro-fibre available at the market is considered. In each test sample, three fibres were inserted perpendicular to the top and two side surfaces; two bonding lengths (10 mm and 20 mm) were used. A gripping system was developed to protect the fibres from local damage. A physically non-linear finite element model of the pull-out sample was developed. A bond model was proposed to simulate deformation behaviour of the fibres.
Article in English.
Betono ir sintetinio makroplaušo sukibties savybių nustatymas ir modeliavimas
Santrauka
Šio tyrimo objektas – sintetinio makroplaušo sukibties elgsena betone. Sukibties stiprumas ir standumas yra parametrai, apibūdinantys sukibties mechanizmą, kuris lemia armatūrinės medžiagos efektyvumą. Tačiau nėra bendros metodikos, kuria būtų galima įvertinti plaušo efektyvumą. Taip pat nėra nei paprasčiausios sintetinio makroplaušo sukibties kokybės įvertinimo procedūros, nei patikimo skaitmeninio modelio, kuris imituotų tokių plaušų sukibties elgesį. Šiame darbe 40 mm ilgio sintetinių makroplaušų sukibties mechanizmai tiriami atliekant ištraukimo bandymus. Tam buvo pagaminta 16 betono kubelių. Išbandoma viena iš rinkoje esančių sintetinių makroplaušų rūšių. Kiekviename bandinyje trys plaušai buvo įgilinami statmenai viršutiniam ir dviem šoniniams paviršiams. Buvo naudojami du įgilinimo ilgiai (10 mm ir 20 mm). Sukurta įtvirtinimo sistema, apsauganti plaušus nuo vietinių pažeidimų. Buvo sukurtas fiziškai netiesinis iš betono ištraukiamų plaušų baigtinių elementų modelis, pasiūlytas sukibties modelis, siekiant imituoti plaušų elgseną deformuojantis.
Reikšminiai žodžiai: sintetiniai plaušai, ištraukimas, bandymas, sukibties elgsena, skaitmeninis modeliavimas.
Keyword : synthetic fibres, pull out, test, bond behaviour, numerical modelling
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Babafemi, A. J., & Boshoff, W. P. (2017). Pull-out response of macro synthetic fibre from concrete matrix: Effect of loading rate and embedment length. Construction and Building Materials, 135, 590–599. https://doi.org/10.1016/j.conbuildmat.2016.12.160
Bentur, A., Diamond, S., & Mindess, S. (1985). The microstructure of the steel fibre-cement interface. Journal of Materials Science, 20, 3610–3620. https://doi.org/10.1007/BF01113768
Bitencourt, L. A. G., Manzoli, O. L., Bittencourt, T. N., & Vecchio, F. J. (2019). Numerical modeling of steel fiber reinforced concrete with a discrete and explicit representation of steel fibers. International Journal of Solids and Structures, 159, 171–190. https://doi.org/10.1016/j.ijsolstr.2018.09.028
Breitenbücher, R., Meschke, G., Song, F., & Zhan, Y. (2014). Experimental, analytical and numerical analysis of the pullout behaviour of steel fibres considering different fibre types, inclinations and concrete strengths. Structural Concrete, 15, 126–135. https://doi.org/10.1002/suco.201300058
Červenka, V., Jendele, L., & Červenka, J. (2018). ATENA program documentation – part 1: theory. Červenka Consulting.
Del Prete, C., Buratti, N., Manzi, S., & Mazzotti, C. (2019). Macro synthetic fibre reinforced concrete: Influence of the matrix mix design on interfacial bond behavior. IOP Conference Series: Materials Science and Engineering, 596, 012025.
https://doi.org/10.1088/1757-899X/596/1/012025
Gao, X., Zhang, J., & Su, Y. (2019). Influence of vibration-induced segregation on mechanical property and chloride ion permeability of concrete with variable rheological performance. Construction and Building Materials, 194, 32–41.
https://doi.org/10.1016/j.conbuildmat.2018.11.019
Juhász, K. P. (2019). The effect of the synthetic fibre reinforcement on the fracture energy of the concrete. IOP Conference Series: Materials Science and Engineering, 613, 012037. https://doi.org/10.1088/1757-899X/613/1/012037
Oesch, T., Landis, E., & Kuchma, D. (2018). A methodology for quantifying the impact of casting procedure on anisotropy in fiber-reinforced concrete using X-ray CT. Materials and Structures, 51, 73. https://doi.org/10.1617/s11527-018-1198-8
Signorini, C., Sola, A., Malchiodi, B., Nobili, A., & Gatto, A. (2020). Failure mechanism of silica coated polypropylene fibres for Fibre Reinforced Concrete (FRC). Construction and Building Materials, 236, 117549.
https://doi.org/10.1016/j.conbuildmat.2019.117549
Sivakumar, A., & Santhanam, M. (2007). A quantitative study on the plastic shrinkage cracking in high strength hybrid fibre reinforced concrete. Cement & Concrete Composites, 29, 575–581. https://doi.org/10.1016/j.cemconcomp.2007.03.005
Vandewalle, L. (2000). RILEM TC 162 TDF: Test and design methods for steel fibre reinforced concrete. Materials and Structures, 33, 3–5.
Wang, Y., Li, V. C., & Backer S. (1988). Modelling of fibre pullout from a cement matrix. International Journal of Cement Composites and Lightweight Concrete, 10, 143–149.
https://doi.org/10.1016/0262-5075(88)90002-4
Zhang, J., Eisenträger, J., Duczek, S., & Song, C. (2019). Discrete modeling of fiber reinforced composites using the scaled boundary finite element method. Composite Structures, 235, 111744. https://doi.org/10.1016/j.compstruct.2019.111744