Application of energy and exergy analysis to investigate the operation of an air handling unit with heat pump
Abstract
With the growth of energy-efficient building sector, ventilation systems are becoming increasingly important not only of fresh air supply but also in terms of energy consumption. The aim of this paper is to describe and analyse the operation of an air handling unit (AHU) with a heat pump using energy and exergy analyses under the variable environmental temperature (from –30 °C to 10 °C). The application of selected methods is illustrated in a case study of an AHU using environmental temperatures of Vilnius city during heating season (from the beginning of October to the end of April). An analytical method for determining distribution of the environmental (outdoor air) temperature is used. Energy and exergy analyses showed periods when the highest amounts of energy and exergy were consumed and the greatest exergy losses occurred. This allowed to reveal the component of the system with the highest exergy losses – the heat pump evaporator. Therefore, further research is needed for its design and application. At the end of the article, the seasonal indicators of the AHU with heat pump operation were calculated: coefficient of performance and exergy efficiency. The presented research procedure could be applied to the analysis of other energy systems and processes in them.
Article in Lithuanian.
Energinės ir ekserginės analizės taikymas oro paruošimo įrenginio su šilumos siurbliu veikimui tirti
Santrauka
Augant energiškai efektyvių pastatų sektoriui, vėdinimo sistemos tampa vis svarbesnės ne tik tiekiant švarų orą, bet ir vartojant energiją. Šio straipsnio tikslas – aprašyti ir išnagrinėti oro paruošimo įrenginio (OPĮ) su šilumos siurbliu veikimą energinės ir ekserginės analizės metodais, kartu atsižvelgiant į kintamą aplinkos oro temperatūrą šaltuoju sezonu (nuo –30 °C iki 10 °C). Pasirinktų metodų pritaikymas iliustruojamas atskiru OPĮ atveju – naudojant Vilniaus miesto aplinkos oro temperatūras šildymo sezono metu (nuo spalio pradžios iki balandžio pabaigos). Skaičiuoti taikytas analitinis lauko oro temperatūros pasiskirstymo nustatymo metodas. Atlikta energinė ir ekserginė analizė leido nustatyti laikotarpius, kai suvartojami didžiausi energijos ir eksergijos kiekiai bei patiriama didžiausių eksergijos nuostolių. Tai suteikė galimybę atskleisti sistemos komponentą, kuriame patiriama didžiausių eksergijos nuostolių – tai šilumos siurblio garintuvas. Todėl jam projektuoti ir naudoti turi būti skirti papildomi tyrimai. Straipsnio pabaigoje apskaičiuoti OPĮ su šilumos siurbliu veikimo sezoniniai rodikliai: veiksmingumo koeficientas ir ekserginis naudingumas. Pateikta tyrimo eiga gali būti pritaikoma kitų energinių sistemų ir juose vykstančių procesų analizei.
Reikšminiai žodžiai: ekserginė analizė, energinė analizė, oro paruošimo įrenginys su šilumos siurbliu, sezoninis ekserginis naudingumas, sezoninis veiksmingumo koeficientas (SCOP), ŠVOK sistemos.
Keyword : exergy analysis, energy analysis, air handling unit with heat pump, seasonal exergy efficiency, seasonal coefficient of performance (SCOP), HVAC systems
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Borel, L. (1984). Thermodynamique et énergétique. Presses polytechniques romandes.
Chenari, B., Carrilho, J. D., & Gameiro da Silva, M. (2016). Towards sustainable, energy-efficient and healthy ventilation strategies in buildings: a review. Renewable and Sustainable Energy Reviews, 59, 1426–1447. https://doi.org/10.1016/j.rser.2016.01.074
Ren, C., Li, N., & Tang, G. (2002). Principles of exergy analysis in HVAC and evaluation of evaporative cooling schemes. Building and Environment, 37(11), 1045–1055. https://doi.org/10.1016/S0360-1323(01)00104-4
Fang, X., Jin, X., Du, Z., & Wang, Y. (2016). The evaluation of operation performance of HVAC System based on the ideal operation level of system. Energy and Buildings, 110, 330–344. https://doi.org/10.1016/j.enbuild.2015.11.020
Januševičius, K., Bielskus, J., Martinaitis, V., Streckienė, G., & Rimdžius, D. (2017, April 27–28). Expressing the building energy systems thermodynamic seasonal efficiency. In Environmental Engineering 10th International Conference (pp. 1–9), Lithuania. https://doi.org/10.3846/enviro.2017.271
Khalid, F., Dincer, I., & Rosen, M. A. (2015). Development and analysis of sustainable energy systems for building HVAC applications. Applied Thermal Engineering, 87, 389–401.
https://doi.org/10.1016/j.applthermaleng.2015.04.015
Kim, M. K., Leibundgut, H., & Choi, J.-H. (2014). Energy and exergy analyses of advanced decentralized ventilation system compared with centralized cooling and air ventilation systems in the hot and humid climate. Energy and Buildings, 79, 212–222. https://doi.org/10.1016/j.enbuild.2014.05.009
Koroneos, C., & Kalemakis, I. (2012). Exergy indicators in the building environment exergy indicators in the building environment. International Journal of Exergy, 11(4), 439–459. https://doi.org/10.1504/IJEX.2012.050255
Laverge, J., & Janssens, A. (2012). Heat recovery ventilation operation traded off against natural and simple exhaust ventilation in europe by primary energy factor, carbon dioxide emission, household consumer price and exergy. Energy and Buildings, 50, 315–323. https://doi.org/10.1016/j.enbuild.2012.04.005
Martinaitis, V. (2001). Thermodynamical analysis model of building life cycle: monograph. Technika.
https://doi.org/10.1080/13921525.2001.10531702
Martinaitis, V., Bieksa, D., & Miseviciute, V. (2010). Degree-days for the exergy analysis of buildings. Energy and Buildings, 42(7), 1063–1069. https://doi.org/10.1016/j.enbuild.2010.01.019
Martinaitis, V., Streckiene, G., Bagdanavicius, A., & Bielskus, J. (2018). A comparative thermodynamic analysis of air handling units at variable reference temperature. Applied Thermal Engineering, 143, 385–395. https://doi.org/10.1016/j.applthermaleng.2018.07.122
Martinaitis, V., Streckienė, G., Biekša, D., & Bielskus, J. (2016). The exergy efficiency assessment of heat recovery exchanger for air handling units, using a state property – Coenthalpy. Applied Thermal Engineering, 108, 388–397. https://doi.org/10.1016/j.applthermaleng.2016.07.118
Misevičiūtė, V., Valančius, K., Motuzienė, V., & Rynkun, G. (2016). Analysis of exergy demand for air heating of an air handling unit. Energy Efficiency, 10, 989–998. https://doi.org/10.1007/s12053-016-9499-7
Moran, M. J., & Shapiro, H. N. (2006). Fundamentals of engineering thermodynamics (5th ed.). Wiley.
Streckienė, G., Martinaitis, V., & Bielskus, J. (2019). From entropy generation to exergy efficiency at varying reference environment temperature: case study of an air handling unit. Entropy, 21(361), 1–21. https://doi.org/10.3390/e21040361
Wei, Z., & Zmeureanu, R. (2009). Exergy analysis of variable air volume systems for an office building. Energy Conversion and Management, 50(2), 387–392. https://doi.org/10.1016/j.enconman.2008.09.010