The air viscosity coefficient and other related values
Abstract
Experimental measurements of the dynamic coefficient of air viscosity were done. Numerous other related values such as the kinematic coefficient of air viscosity, the mean free path and the mean thermal square velocity of air molecules were determined. The dependence of the air dynamic viscosity coefficient on temperature was also obtained. It allowed us to determine the Sutherland’s corrections and to estimate the dimension of air molecules and the temperature gradients of the dynamic and kinematic coefficients of the air viscosity. The determined values were compared to the similar theoretical and experimental data obtained by other authors.
Article in English.
Oro klampumo koeficientas ir kiti susieti dydžiai
Santrauka
Buvo atlikti eksperimentiniai oro klampos koeficiento matavimai. Matuojant buvo nustatytos kitų susijusių dydžių eksperimentinės vertės: oro klampumo kinematinis koeficientas, vidutinis laisvasis kelias ir vidutinis oro molekulių šiluminis kvadratinis greitis. Taip pat gauta oro dinaminio klampos koeficiento priklausomybė nuo temperatūros. Gautosios vertės leido nustatyti Sazerlendo pataisas, įvertinti oro molekulių matmenis, taip pat oro klampos dinaminių ir kinematinių koeficientų temperatūros gradientus. Vertės palygintos su kitų autorių gautais teoriniais ir eksperimentiniais rezultatais.
Reikšminiai žodžiai: oro klampa, vidutinis šiluminis greitis, vidutinis laisvasis kelias, oro tankis, Sazerlendo pataisos, molekulių matmenys.
Keyword : air viscosity, mean thermal velocity, mean free path, air density, Sutherland’s corrections, dimension of molecules
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Bogdanovičius, A. (2010). Fizikos pagrindai inžinerijoje (1 dalis). Technika. https://doi.org/10.3846/1109-S
Chapman, S., & Cowling, T. G. (1991). The mathematical theory of non-uniform gases (3th ed.). Cambridge University Press.
Davisson, J. L., Brinkmann, N. R., & Polik, W. F. (2012). Accurate and efficient calculation of excited vibrational states from quartic potential energy surfaces. Molecular Physics, 110, 2587−2598. https://doi.org/10.1080/00268976.2012.724183
Halliday, D., Resnick, R., & Walker, J. (2014). Fundamentals of physics (10th ed.). Wiley & Sons.
Lide, D. R. (2006). Handbook of chemistry and physics (87th ed.). CRC Press.
Loschmidt, J. (1995). On the size of the air molecules. Journal of Chemical Education, 72(10), 870−875.
https://doi.org/10.1021/ed072p870.2
Nave, C. R., & Nave, B. C. (1985). Physics for the health sciences (3th ed.). Saunders.
Shakhashiri, B. Z. (1986). Chemical demonstrations: a handbook for teachers of chemistry (Vol. 2). University of Wisconsin Press.
Smits, A. J., & Dussauge, J.-P. (2006). Turbulent shear layers in supersonic flow (2th ed.). Springer-Verlag.
Tiwary, A., Williams, I., & Colls, J. (2019). Air pollution – measurement, modelling and mitigation (4th ed.). CRC Press. https://doi.org/10.1201/9780429469985
Weast, R. C. (1984). CRC handbook of chemistry and physics (63th ed.). CRC Press.
White, F. M. (2005). Viscous fluid flow (3nd ed.). McGraw-Hill Education.
Zhang, Y. (2004). Indoor air quality engineering (1th ed.). CRC
Press. https://doi.org/10.1201/b12485