The results of research pneumatic electromagnetic pulsator combined with collector
Abstract
This article demonstrates the results of experimental research one of the pulsators. Its main difference from others is a pneumatic electromagnetic pulsator in combination with a collector. Therefore, this article describes in detail the process of studying the pulsator. The planned experiment was carried out on by Factorial experiments with multiple factors. The influence of factors (the ripple frequency n, the milk ejection q and the ratio between strokes t/T) on the vacuum pressure in the inter wall chamber of teat cups was studied. The regression equation of the dependence response criterion on factors is modeled. This dependence is demonstrated graphically. Also there is a contour graph which is for more detailed information.
Article in English.
Pneumatinio elektromagnetinio pulsatoriaus su kolektoriumi tyrimo rezultatai
Santrauka
Šiame straipsnyje yra pateikti vieno iš pulsatoriaus eksperimentinio tyrimo rezultatai. Esminis išskirtinis šio pulsatoriaus bruožas – kolektoriaus buvimas. Buvo atliktas išsamus faktorinis eksperimentas. Tiriamas tokių faktorių, kaip pulsacijų dažnio n, pieno išskyrimo q ir taktų santykio t/T, poveikis vakuuminiam spaudimui vidinėje melžimo mašinos kameros sienelėje. Buvo suformuluota regresinė lygtis, vaizduojanti faktorių priklausomybės atsako kriterijų. Ši priklausomybė pavaizduota grafiškai. Taip pat yra pridėtas kontūrinis grafikas detalesnei informacijai pademonstruoti.
Reikšminiai žodžiai: melžimo mašina, pulsatorius, elektromagnetinis pulsatorius, kolektorius, vakuuminis spaudimas, pulsacijos dažnis, išmesta pieno masė, faktoriai.
Keyword : milking machine, pulsator, electromagnetic pulsator, collector, vacuum pressure, ripple frequency, milk ejection, factors
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Dmytriv, V. T., Dmytriv, I. V., Horodetskyy, I. M., & Yatsunskyi, P. P. (2020). Adaptive cyber-physical system of the milk production process. INMATEH: Agricultural Engineering, 61(2), 199–208. https://doi.org/10.35633/inmateh-61-22
Dmytriv, V. T., Dmytriv, I. V., & Yatsunskyi, P. P. (2019). Experimental pulse generator combined with the milking machine collector. INMATEH: Agricultural Engineering, 59(3), 219–226. https://doi.org/10.35633/inmateh-59-24
Ferneborg, S., & Svennersten-Sjaunja, K. (2015). The effect of pulsation ratio on teat condition, milk somatic cell count and productivity in dairy cows in automatic milking. Journal of Dairy Research, 82(4), 453–459. https://doi.org/10.1017/S0022029915000515
Floridi, M., Bartolini, F., Peerlings, J., Polman, N., & Viaggi, D. (2013). Modelling the adoption of automatic milking systems in Noord-Holland. Bio-based and Applied Economics, 2(1), 73–90.
Mein, G. A., & Reinemann, D. J. (2007). Making the most of machine-on time: What happens when the cups are on? [Electronic resource]. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.394.2868
Pastell, M., Takko, H., Grohn, H., Hautala, M., Poikalainen, V., Praks, J., Veermae, I., Kujala, M., & Ahokas, J. (2006). Assessing cows’ welfare: Weighing the cow in a milking robot. Biosystems Engineering, 93, 81–87. https://doi.org/10.1016/j.biosystemseng.2005.09.009
Penry, J. F., Leonardi, S., Upton, J., Thompson, P. D., & Reinemann, D. J. (2016). Assessing liner performance using on-farm milk meters. Journal of Dairy Science, 99, 6609–6618. https://doi.org/10.3168/jds.2015-10310
Tancin, V., Ipema, B., Hogewerf, P., & Macuhova, J. (2006). Sources of variation in milk flow characteristics at udder and quarter levels. Journal of Dairy Science, 89(3), 978–988. https://doi.org/10.3168/jds.S0022-0302(06)72163-4
Thomas, C. V., Bray, D. R., & Delorenzo, M. A. (1993). Evaluation of 50/50 and 70/30 pulsation ratios in a large commercial dairy herd. Journal of Dairy Science, 76(5), 1298–1304. https://doi.org/10.3168/jds.S0022-0302(93)77460-3