Analysis of embankment slope steepness and stability
Abstract
This paper describes the stability calculations of the most common road embankments slopes and their results using the modified Bishop method. By searching for the smallest possible effective angle of internal friction of the different slope steepness embankments, the possible different bases of the embankment, the weight of the embankment soil, the load caused by transport and the location of load application (shoulder) were evaluated. Analyzing the obtained calculation results, it was determined that at a slope of 1:2 (26.57°) steepness, to ensure slope stability, the calculated effective internal friction angle of the embankment soil should be φʹd ≥ 28.5°, and at a slope of 1:1.75 (29.74°) steepness – φʹd ≥ 29.8°. When the slope is 2:3 (33.69°) steepness, the stability of the slope cannot be guaranteed.
Article in Lithuanian.
Grunto sankasos šlaito statumo ir stabilumo analizė
Santrauka
Šiame straipsnyje aprašyti dažniausiai transporto keliuose pasitaikančių sankasų šlaitų stabilumo skaičiavimai ir jų rezultatai, taikant modifikuotą Bishop metodą. Skaičiavimais nustatyti mažiausi galimi skirtingų šlaitų statumo ir sankasos efektyvieji vidinės trinties kampai įvertinant skirtingus sankasos (pylimo) pagrindus, sankasos grunto tūrinius svorius, transporto sukeliamas apkrovas ir apkrovų pridėjimo vietas (pečius). Analizuojant gautus skaičiavimo rezultatus, nustatyta, kad siekiant užtikrinti šlaito stabilumą šlaitui esant 1:2 (26,57°) statumo, skaičiuotinis sankasos grunto efektyvusis vidinės trinties kampas turėtų būti φʹd ≥ 28,5°, o šlaitui esant 1:1,75 (29,74°) statumo – φʹd ≥ 29,8°. Kai šlaitas yra 2:3 (33,69°) statumo, šlaito stabilumo užtikrinti nepavyksta.
Reikšminiai žodžiai: šlaito stabilumas, šlaito statumas, grunto sankasa, automobilių keliai, transporto apkrovos, modifikuotas Bishop metodas, vidinės trinties kampas.
Keyword : slope stability, slope steepness, soil embankment, roads, transport loads, modified Bishop method, angle of internal friction
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Burman, A., Acharya, S. P., Sahay, R. R., & Maity, D. (2015). A comparative study of slope stability analysis using traditional limit equilibrium method and finite element method. Asian Journal of Civil Engineering (BHRC), 16(4), 467–492.
Caicedo, B. (2019). Geotechnics of roads: Fundamentals. Taylor & Francis Group. https://doi.org/10.1201/9780429025914
Duncan, J. M., Wright, S. G., & Brandon, T. L. (2014). Soil strength and slope stability. John Wiley & Sons.
Hammah, R., Yacoub, T., Corkum, B., & Curran, J. (2005). A comparison of finite element slope stability analysis with conventional limit-equilibrium investigation. In Proceedings of the 58th Canadian Geotechnical and 6th Joint IAH-CNC and CGS Groundwater Specialty Conferences – GeoSask 2005 (pp. 1–8). https://www.rocscience.com/assets/resources/learning/papers/A-Comparison-of-Finite-Element-Slope-Stability-Analysis-with-Conventional-Limit-Equilibrium-Investigation.pdf
Harabinova, S. (2017). Assessment of slope stability on the road. Procedia Engineering, 190, 390–397. https://doi.org/10.1016/j.proeng.2017.05.354
Laurinavičius, A., & Juknevičiūtė-Žilinskienė, L. (2011, May 19–20). Eleven years of RWIS operation in Lithuania: Possibilities for the use of the data collected. In The 8th International Conference “Environmental Engineering” (pp. 1108–1112), Vilnius, Lithuania.
Lietuvos automobilių kelių direkcija. (2004). Statybos taisyklės ST188710638.06:2004. Automobilių kelių žemės sankasos įrengimas (3 priedas. Automobilių kelių žemės sankasos stabilumas). Vilnius.
Lietuvos standartizacijos departamentas. (2003). Eurokodas 1. Poveikiai konstrukcijoms. 2 dalis. Tiltų eismo apkrovos (LST EN 1991-2). Vilnius.
Lietuvos standartizacijos departamentas. (2005). Eurokodas 7. Geotechninis projektavimas. 1 dalis. Pagrindinės taisyklės (LST EN 1997-1). Vilnius.
Liikenneviraston ohjeita. (2017). Eurokoodin soveltamisohje – Geotekninen suunnittelu (NCCI 7). Siltojen ja pohjarakenteiden suunnitteluohjeet. https://julkaisut.vayla.fi/pdf8/lo_2017-13_ncci7_web.pdf
Liu, C. Y., & Hounsa, U. S. F. (2018). Analysis of road embankment slope stability. Open Journal of Civil Engineering, 8, 121–128. https://doi.org/10.4236/ojce.2018.82010
Lu, M., Zhang, J., Zhang, L., & Zhang, L. (2020). Assessing the annual risk of vehicles being hit by a rainfall-induced landslide: A case study on Kennedy Road in Wan Chai, Hong Kong. Natural Hazards and Earth System Sciences, 20(6), 1833–1846. https://doi.org/10.5194/nhess-20-1833-2020
Matthews, C., Farook, Z., & Helm, P. (2014). Slope stability analysis – limit equilibrium or the finite element method? Ground Engineering, 48(5), 22–28. http://www.geplus.co.uk/technical-paper-database-/technical-paper-slope-stability-analysislimit-equilibrium-or-the-finite-element-method/8667183.article
Panagos, P., Borrelli, P., & Meusburger, K. (2015). A new European slope Length and Steepness Factor (LS-Factor) for modeling soil erosion by water. Geosciences, 5(2), 117–126. https://doi.org/10.3390/geosciences5020117
Salunkhe, D. P., Bartakke, R. N., Chvan, G., & Kothavale, P. R. (2017). An overview on methods for slope stability analysis. International Journal of Engineering Research & Technology (IJERT), 6(03), 2278–0181. https://doi.org/10.17577/IJERTV6IS030496
Vaitkus, A., Gražulytė, J., Skrodenis, E., & Kravcovas, I. (2016). Design of frost resistant pavement structure based on Road Weather Stations (RWSs) data. Sustainability, 8(12), 1–13. https://doi.org/10.3390/su8121328