Influence of local displacements and stresses on combined string structure
Abstract
The article discusses the combined string construction of a single span. 2 load methods are analyzed when the structure is loaded with a distributed load and when the structure is loaded with concentrated loads on the struts. The stresses and displacements caused by such loading methods are given. The effect of prestressing caused by the distributed load and local deflections in the string is discussed in more detail. It is assumed that the additional stresses caused by local displacements under constant load can be treated as prestressing. To confirm the assumption, 2 loading methods are compared: when the structure is loaded with concentrated loads and the string is subjected to additional prestressing; when the structure is subjected to a distributed load without additional prestressing.
Article in Lithuanian.
Vietinių įlinkių ir įtempių įtaka kombinuotai styginei konstrukcijai
Santrauka
Straipsnyje aptariama vieno tarpatramio kombinuota styginė konstrukcija. Analizuojami 2 apkrovimo būdai, kai konstrukcija apkraunama paskirstytąja apkrova ir kai konstrukcija apkraunama koncentruotosiomis apkrovomis į statramsčius. Pateikiami tokių apkrovimo būdų sukelti įtempiai ir poslinkiai. Plačiau aptariamas išankstinio įtempimo efektas, kurį sukelia paskirstytoji apkrova ir vietiniai įlinkiai stygoje. Daroma prielaida, kad nuolatinės apkrovos vietinių įlinkių sukelti papildomi įtempiai gali būti traktuojami kaip išankstinis įtempimas. Prielaidai patvirtinti sulyginami 2 apkrovimo būdai: kai konstrukcija apkrauta koncentruotosiomis apkrovomis ir styga yra su papildomu išankstiniu įtempimu; kai konstrukcija apkrauta paskirstytąja apkrova be papildomo išankstinio įtempimo.
Reikšminiai žodžiai: tiltai, kabamosios konstrukcijos, kinematiniai poslinkiai, tamprieji poslinkiai, styga, vietiniai įlinkiai, vietiniai įtempiai, išankstinis įtempimas.
Keyword : bridges, suspension structures, kinematic displacements, elastic displacements, string, local displacements, local stresses, prestressing
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Beivydas, E. (2019). A simplified calculation method for symmetrical loading of a single-span composite string steel structure. Engineering Structures and Technologies, 11(2), 70–73. https://doi.org/10.3846/est.2019.11323
Bleicher, A. (2011). Aktive Schwingungskontrolle einer Spannbandbrücke mit pneumatischen Aktuatoren. Von der Fakultät VI – Planen Bauen Umwelt der Technischen Universität Berlin zur Erlangung des akademischen Grades. https://doi.org/10.1002/bate.201201539
Chen, Z., Cao, H., Zhu, H., Hu, J., & Li, S. (2014). A simplified structural mechanics model for cable-truss footbridges and its implications for preliminary design. Engineering Structures, 68, 121–133. https://doi.org/10.1016/j.engstruct.2014.02.015
Gimsing, N. J. (1997). Cable supported bridges: Concept and design (2nd ed.). John Wiley & Sons.
Greco, L., Impollonia, N., & Cuomo, M. (2014). A procedure for the static analysis of cable structures following elastic catenary theory. International Journal of Solids and Structures, 51, 1521–1533. https://doi.org/10.1016/j.ijsolstr.2014.01.001
Katchurin, V. K. (1969). Static design of cable structures. Stroyizdat (in Russian).
Kmet, S., & Kokorudova, Z. (2009). Non-linear closed form computational model of cable trusses. International Journal of Non-Linear Mechanics, 44(7), 735–744. https://doi.org/10.1016/j.ijnonlinmec.2009.03.004
Kulbach, V. (1999). Half-span loading of cable structures. Journal of Constructional Steel Research, 49(2), 167–180. https://doi.org/10.1016/S0143-974X(98)00215-6
Linkutė, E. (2015). Arrangement and behaviour analysis of prestressed string steel bridges [Master’s thesis]. Vilnius Gediminas Technical University.
Salamak, M., & Markocki, B. (2012). Trwałość konstrukcji wstęgowej z betonu sprężonego w świetle próbnych badań kładki pieszo – jezdnej w m. Lubień [Conference presentation]. Wrocławskie Dni Mostowe Trwałość obiektów mostowych Wrocław, Wrocław.
Sandovič, G., & Juozapaitis, A. (2012). The analysis of the behaviour of an innovative pedestrian steel bridge. Procedia Engineering, 40, 411–416. https://doi.org/10.1016/j.proeng.2012.07.117
Schlaich, M., Bogle, A., & Bleicher, A. (2011). Entwerfen und konstruieren massivbau. Institut fur Bauingenieurwesen Technische Universitat Berlin.
Strasky, J. (2005). Stress-ribbon and supported cable pedestrian bridges. Thomas Telford Ltd.
Unitsky, A. (2006). String transport in questions and answers. Moscow.