Share:


Noise barriers efficiency dependence on their shape and geometry

Abstract

The work examines noise barriers and evaluates their effectiveness when changing their geometry and shape. Noise barriers are one of the most effective and widely used methods of reducing noise caused by road and railway transport. The effectiveness of the barrier depends on the materials used in the construction, the barrier’s height, geometry, shape, and the acoustic properties of the additional elements installed on top of the barriers. The aim of the work is to review and analyze the scientific literature, which would allow to evaluate the dependence of the acoustic characteristics of noise-reducing barriers on the geometry and shape of the barrier, and to provide recommendations for the design and selection of noise barriers.


Article in Lithuanian.


Triukšmą mažinančių barjerų efektyvumo priklausomybė nuo formos ir geometrijos


Santrauka


Straipsnyje nagrinėjami triukšmą mažinantys barjerai ir vertinamas jų efektyvumas kintant jų geometrijai ir formai. Triukšmą mažinantys barjerai – viena efektyviausių ir plačiai naudojamų priemonių, užtikrinančių kelių ir geležinkelių transporto sukeliamo triukšmo mažinimą. Barjero efektyvumas priklauso nuo konstrukcijoje naudojamų medžiagų, barjero aukščio, geometrijos, formos, ant barjerų viršaus įrengtų papildomų elementų akustinių savybių. Darbo tikslas – apžvelgti ir išanalizuoti mokslinę literatūrą, kuri leistų įvertinti triukšmą mažinančių barjerų akustinių charakteristikų priklausomybę nuo barjero geometrijos ir formos. Straipsnyje apžvelgtas Y, T, L, U formos barjerų efektyvumas, nustatyta, kad daugumoje atvejų geriausi barjerų triukšmo slopinimo rezultatai gaunami ant barjerų viršaus įrengiant T formos ir Y formos profilius. Tokio tipo triukšmą mažinančių barjerų efektyvumas gali padidėti nuo 15 % iki 30 %. Pastebėta, kad triukšmui nuo greitaeigių traukinių mažinti mokslininkai kuria ir tiria lenktus, pusiau uždarus L formos arba visiškai uždarus U formos barjerus.


Reikšminiai žodžiai: triukšmas, triukšmo mažinimas, triukšmo barjerų efektyvumas, triukšmo barjerų forma.

Keyword : noise, noise reduction, efficiency of noise barriers, shape and geometry of noise barriers

How to Cite
Strazdas, E., & Januševičius, T. (2023). Noise barriers efficiency dependence on their shape and geometry. Mokslas – Lietuvos Ateitis / Science – Future of Lithuania, 15. https://doi.org/10.3846/mla.2023.19430
Published in Issue
Sep 18, 2023
Abstract Views
232
PDF Downloads
207
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Asdrubali, F. (2007). On the experimental evaluation of the performances of noise barrier diffracting devices. Acta Acustica United with Acustica, 93(4), 659–669. https://www.researchgate.net/publication/233651662_On_the_Experimental_Evaluation_of_the_Performances_of_Noise_Barrier_Diffracting_Devices

Astrauskas, T., Baltrėnas, P., Januševičius, T., & Grubliauskas, R. (2021). Louvred noise barrier for traffic noise reduction. The Baltic Journal of Road and Bridge Engineering, 16(1), 140–154. https://doi.org/10.7250/bjrbe.2021-16.519

Baulac, M., Defrance, J., & Jean, P. (2008). Optimisation with genetic algorithm of the acoustic performance of T-shaped noise barriers with a reactive top surface. Applied Acoustics, 69(4), 332–342. https://doi.org/10.1016/j.apacoust.2006.11.002

Blanes, N., Fons, J., Houthuijs, D., Swart, W., de la Maza, M. S., Ramos, M. J., Castell, N., & van Kampen, E. (2017). Noise in Europe 2017: Updated assessment (Report). European Topic Centre on Air Pollution and Climate Change Mitigation.

Ekici, I., & Bougdah, H. (2003). A review of research on environmental noise barriers. Building Acoustics, 10(4), 289–323. https://doi.org/10.1260/135101003772776712

European Environment Agency. (2020). Environmental noise in Europe: 2020. https://www.eea.europa.eu/publications/environmental-noise-in-europe

Greiner, D., Aznárez, J. J., Maeso, O., & Winter, G. (2010). Single- and multi-objective shape design of Y-noise barriers using evolutionary computation and boundary elements. Advances in Engineering Software, 41(2), 368–378. https://doi.org/10.1016/j.advengsoft.2009.06.007

Grubeša, S., Jambrošić, K., & Domitrović, H. (2012). Noise barriers with varying cross-section optimized by genetic algorithms. Applied Acoustics, 73(11), 1129–1137. https://doi.org/10.1016/j.apacoust.2012.05.005

Hanim Mohamed Ariff, A., Dele-Afolabi, T. T., Hossain Rafin, T., Jung, D. W., Leman, Z., Anas Md Rezali, K., & Calin, R. (2022). Temporary sound barrier system from natural fiber polymeric composite. Materials Today: Proceedings, 74, 438–449. https://doi.org/10.1016/j.matpr.2022.11.142

Huang, Y., & Zong, H. (2020). The spatial distribution and determinants of China’s high-speed train services. Transportation Research Part A: Policy and Practice, 142, 56–70. https://doi.org/10.1016/j.tra.2020.10.009

Ishizuka, T., & Fujiwara, K. (2004). Performance of noise barriers with various edge shapes and acoustical conditions. Applied Acoustics, 65(2), 125–141. https://doi.org/10.1016/j.apacoust.2003.08.006

Yamamoto, K. (2015). Japanese experience to reduce road traffic noise by barriers with noise reducing devices. In 10th European Congress and Exposition on Noise Control Engineering, EuroNoise (Vol. 31, pp. 33–38). https://www.conforg.fr/euronoise2015/proceedings/data/articles/000606.pdf

Yang, W., Ouyang, D., Deng, E., He, X., Zou, Y., & Huang, Y. (2022). Aerodynamic characteristics of two noise barriers (fully enclosed and semi-enclosed) caused by a passing train: A comparative study. Journal of Wind Engineering and Industrial Aerodynamics, 226, 105028. https://doi.org/10.1016/j.jweia.2022.105028

Jolibois, A., Defrance, J., Koreneff, H., Jean, P., Duhamel, D., & Sparrow, V. W. (2015). In situ measurement of the acoustic performance of a full scale tramway low height noise barrier prototype. Applied Acoustics, 94, 57–68. https://doi.org/10.1016/j.apacoust.2015.02.006

Komkin, A. I., & Nazarov, G. M. (2021). Features of sound diffraction by a noise absorbing screen. Acoustical Physics, 67(3), 298–301. https://doi.org/10.1134/S1063771021030076

Laxmi, V., Thakre, C., & Vijay, R. (2022). Evaluation of noise barriers based on geometries and materials: A review. Environmental Science and Pollution Research, 29(2), 1729–1745. https://doi.org/10.1007/S11356-021-16944-2

Li, Q., Duhamel, D., Luo, Y., & Yin, H. (2020). Analysing the acoustic performance of a nearly-enclosed noise barrier using scale model experiments and a 2.5-D BEM approach. Applied Acoustics, 158, 107079. https://doi.org/10.1016/j.apacoust.2019.107079

Lietuvos automobilių kelių direkcija. (2015). Triukšmo užtvarų parinkimo, modeliavimo, projektavimo ir įrengimo taisyklės T TU 15. https://e-seimas.lrs.lt/portal/legalActPrint/lt?jfwid=q86m1vqqw&documentId=a5464420451a11e59cf1cfda14b526c5&category=TAD

Liu, Y., Yang, W., Deng, E., Wang, Y., He, X., Huang, Y., & Zou, Y. (2023). Aerodynamic characteristics of the train–SENB (semi-enclosed noise barrier) system: A high-speed model experiment and LES study. Journal of Wind Engineering and Industrial Aerodynamics, 232, 105251. https://doi.org/10.1016/j.jweia.2022.105251

Martinez-Orozco, J. M., & Barba, A. (2022). Determination of Insertion Loss of noise barriers in Spanish roads. Applied Acoustics, 186, 108435. https://doi.org/10.1016/j.apacoust.2021.108435

May, D. N., & Osman, N. M. (1980). Highway noise barriers: New shapes. Journal of Sound and Vibration, 71(1), 73–101. https://doi.org/10.1016/0022-460X(80)90410-1

Monazzam, M. R., Abbasi, M., & Yazdanirad, S. (2019). Performance evaluation of T-shaped noise barriers covered with oblique diffusers using boundary element method. Archives of Acoustics, 44(3), 521–531. https://doi.org/10.24425/AOA.2019.129267

Monazzam, M. R., & Fard, S. M. B. (2011). Performance of passive and reactive profiled median barriers in traffic noise reduction. Journal of Zhejiang University: Science A, 12(1), 78–86. https://doi.org/10.1631/jzus.A1000065

Monazzam, M. R., & Lam, Y. W. (2005). Performance of profiled single noise barriers covered with quadratic residue diffusers. Applied Acoustics, 66(6), 709–730. https://doi.org/10.1016/j.apacoust.2004.08.008

Nowoświat, A., Bochen, J., Dulak, L., & Zuchowski, R. (2018). Study on sound absorption of road acoustic screens under simulated weathering. Archives of Acoustics, 43(2), 323–337. https://doi.org/10.24425/122380

Pardo-Quiles, D., Rodríguez, J. V., Molina-García-Pardo, J. M., & Juan-Llácer, L. (2020). Traffic noise mitigation using single and double barrier caps of different shapes for an extended frequency range. Applied Sciences, 10(17), 5746. https://doi.org/10.3390/APP10175746

Voropayev, S. I., Ovenden, N. C., Fernando, H. J. S., & Donovan, P. R. (2017). Finding optimal geometries for noise barrier tops using scaled experiments. The Journal of the Acoustical Society of America, 141(2), 722. https://doi.org/10.1121/1.4974070

Wang, Y., Jiao, Y., & Chen, Z. (2018). Research on the well at the top edge of noise barrier. Applied Acoustics, 133, 118–122. https://doi.org/10.1016/j.apacoust.2017.12.018

Watts, G. (2000, August). Factors affecting the performance of traffic noise barriers. In The 29th International Congress and Exhibition on Noise Control Engineering (InterNoise 2000), Nice, France.

Watts, G. R., Crombie, D. H., & Hothersall, D. C. (1994). Acoustic performance of new designs of traffic noise barriers: Full Scale tests. Journal of Sound and Vibration, 177(3), 289–305. https://doi.org/10.1006/jsvi.1994.1435

World Health Organization. (2011). Burden of disease from environmental noise: Quantification of healthy life years lost in Europe. https://apps.who.int/iris/handle/10665/326424

World Health Organization. (2018). Environmental noise guidelines for the European Region. https://www.who.int/publications/i/item/9789289053563

Zaets, V., & Kotenko, S. (2017). Investigation of the efficiency of a noise protection screen with an opening at its base. Eastern-European Journal of Enterprise Technologies, 5(5(89)), 4–11. https://doi.org/10.15587/1729-4061.2017.112350

Zhang, X., Liu, R., Cao, Z., Wang, X., & Li, X. (2019). Acoustic performance of a semi-closed noise barrier installed on a high-speed railway bridge: Measurement and analysis considering actual service conditions. Measurement, 138, 386–399. https://doi.org/10.1016/j.measurement.2019.02.030