Share:


Structural application of 3D printing technologies: mechanical properties of printed polymeric materials

Abstract

Additive manufacturing and modern printing technologies using polymeric materials extend the limits of industrial production and encourage applying 3D printing technique in many fields. An item of any shape and size limited only by the printing pad of particular equipment can be reproduced from a variety of materials. Polymers is the object of this research. It is known that mechanical properties of the printed elements are closely related with the manufacturing technology and vary significantly depending on the chosen production parameters such as printing temperature, velocity, and infill density. Depending on the purpose, a particular type of polymer can be used in structural analysis. This work considers mechanical properties of four thermoplastic polymeric materials widely used for prototyping: polylactic acid (PLA), acrylonitrile butadiene styrene (ABS), high impact polystyrene (HIPS), and polyethylene terephthalate (PETG). The study is focused on two fundamental mechanical characteristics, tensile strength and modulus of elasticity, of the printed material. Dumbbell-shaped samples were made of the PLA, ABS, HIPS and PETG polymers using 3D printing technique with the same filling density (≈ 20%) of the entry level. The tensile tests were carried out in Laboratory of Innovative Building Structures at Vilnius Gediminas Technical University. The predominant effect of the printing direction on the mechanical properties of the printed materials was demonstrated in this study. The corresponding experimental characteristics are presented in the manuscript.


Article in English.


Konstrukcinis 3D spausdinimo technologijų taikymas: spausdintų polimerinių medžiagų mechaninės savybės


Santrauka


Modernūs gamybos procesai ir spausdinimo technologijos, naudojant polimerines medžiagas, plečia pramoninės gamybos ribas bei skatina taikyti 3D spausdinimo technologijas daugelyje sričių. Tokios technologijos leidžia gaminti bet kokios formos elementus iš įvairių medžiagų, o jų dydį lemia tik naudojamos spausdinimo įrangos galimybės. Pagrindinis šio tyrimo objektas – polimerinės medžiagos. Spausdintų elementų iš polimerinių medžiagų mechaninės savybės glaudžiai siejamos su gamybos technologija ir gali stipriai varijuoti keičiant gamybos proceso parametrus – spausdinimo temperatūrą, greitį, užpildo tankį. Polimero tipas kartu su jo mechaninėmis savybėmis parenkamas atsižvelgiant į konstrukcinį uždavinį. Šiame darbe nagrinėjamos plačiai prototipų gamyboje taikomų termoplastinių polimerinių medžiagų – polietileno rūgšties (PLA), akrilonitrilo butadieno stireno (ABS), polistireno (HIPS) ir polietileno tereftalato (PETG) – mechaninės savybės. Tyrime dėmesys skiriamas dviem pagrindinėms mechaninėms medžiagų charakteristikoms – tempiamajam stipriui ir tamprumo moduliui. Taikant 3D spausdinimo technologiją buvo pagaminti kaulo formos bandiniai iš PLA, ABS, HIPS ir PETG medžiagų. Bandinių užpildo tankis siekė ≈ 20 % paviršiaus spausdinimo sluoksnio tankio. Elementų tempimo bandymai atlikti Inovatyvių statybinių konstrukcijų laboratorijoje Vilniaus Gedimino technikos universitete. Šiame tyrime buvo parodyta spausdinimo krypties įtaka spausdintų medžiagų mechaninėms savybėms. Taip pat pateiktos eksperimentiškai nustatytos polimerinių medžiagų mechaninės savybės.


Reikšminiai žodžiai: polimerai, 3D spausdinimas, tempimo bandymas, mechaninės savybės, PLA, ABS, HIPS, PETG.

Keyword : polymers, 3D printing, tensile test, mechanical properties, PLA, ABS, HIPS, PETG

How to Cite
Shkundalova, O., Rimkus, A., & Gribniak, V. (2018). Structural application of 3D printing technologies: mechanical properties of printed polymeric materials. Mokslas – Lietuvos Ateitis / Science – Future of Lithuania, 10. https://doi.org/10.3846/mla.2018.6250
Published in Issue
Dec 21, 2018
Abstract Views
1002
PDF Downloads
638
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Alaimo, G., Marconi, S., Costato, L., & Auricchio, F. (2017). Influence of meso-structure and chemical composition on FDM 3D-printed parts. Composites Part B: Engineering, 113, 371-380. https://doi.org/10.1016/j.compositesb.2017.01.019

ASTM. (2014). ASTM D638-14: standard test method for tensile properties of plastics. ASTM International, West Conshohocken, PA. https://doi.org/10.1520/D0638-14

Brooks, H., & Molony, S. (2016). Design and evaluation of additively manufactured parts with three dimensional continuous fibre reinforcement. Materials and Design, 90, 276-283. https://doi.org/10.1016/j.matdes.2015.10.123

Brooks, H., Tyas, D., & Molony, S. (2017). Tensile and fatigue failure of 3D printed parts with continuous fibre reinforcement. International Journal of Rapid Manufacturing, 6(2-3), 97-113. https://doi.org/10.1504/IJRAPIDM.2017.082152

Cifuentes, S. C., Frutos, E., Benavente, R., Lorenzo, V., & González-Carrasco, J. L. (2017). Assessment of mechanical behavior of PLA composites reinforced with Mg micro-particles through depth-sensing indentations analysis. Journal of the Mechanical Behavior of Biomedical Materials, 65, 781-790. https://doi.org/10.1016/j.jmbbm.2016.09.013

Dawoud, M., Taha, I., & Ebeid, S. J. (2016). Mechanical behaviour of ABS: An experimental study using FDM and injection moulding techniques. Journal of Manufacturing Processes, 21, 39-45. https://doi.org/10.1016/j.jmapro.2015.11.002

Dupaix, R. B., & Boyce, M. C. (2005). Finite strain behavior of poly(ethylene terephthalate) (PET) and poly(ethylene terephthalate)-glycol (PETG). Polymer, 46(13), 4827-4838. https://doi.org/10.1016/j.polymer.2005.03.083

Ferreira, R. T. L., Amatte, I. C., Dutra, T. A., & Bürger, D. (2017). Experimental characterization and micrography of 3D printed PLA and PLA reinforced with short carbon fibers. Composites Part B: Engineering, 124, 88-100. https://doi.org/10.1016/j.compositesb.2017.05.013

Gomez-Gras, G., Jerez-Mesa, R., Travieso-Rodriguez, J. A., & Lluma-Fuentes, J. (2018). Fatigue performance of fused filament fabrication PLA specimens. Materials and Design, 140, 278-285. https://doi.org/10.1016/j.matdes.2017.11.072

Hager, I., Golonka, A., & Putanowicz, R. (2016). 3D printing of buildings and building components as the future of sustainable construction. Procedia Engineering, 151, 292-299. https://doi.org/10.1016/j.proeng.2016.07.357

Jerez-Mesa, R., Travieso-Rodriguez, J. A., Llumà-Fuentes, J., Gomez-Gras, G., & Puig, D. (2017). Fatigue lifespan study of PLA parts obtained by additive manufacturing. Procedia Manufacturing, 13, 872-879. https://doi.org/10.1016/j.promfg.2017.09.146

International Organization for Standardization. (2015). ISO/ASTM 52900:2015 additive manufacturing – general principles – terminology. ASTM International, West Conshohocken, PA. Retrieved from https://www.iso.org/standard/69669.html

Karger-Kocsis, J., Bárány, T., & Moskala, E. J. (2003). Plane stress fracture toughness of physically aged plasticized PETG as assessed by the essential work of fracture (EWF) method. Polymer, 44(19), 5691-5699. https://doi.org/10.1016/S0032-3861(03)00590-1

Letcher, T., & Waytashek, M. (2014). Material property testing of 3D-printed specimen in PLA on an entry-level 3D printer. In ASME Proceedings (pp. 1-8). https://doi.org/10.1115/IMECE2014-39379

Lu, W., & Yanhua, Z. (2018). Jointly modified mechanical properties and accelerated hydrolytic degradation of PLA by interface reinforcement of PLA-WF. Journal of the Mechanical Behavior of Biomedical Materials (in press). https://doi.org/10.1016/j.jmbbm.2018.08.016

Melenka, G. W., Cheung, B. K. O., Schofield, J. S., Dawson, M. R., & Carey, J. P. (2016). Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3D printed structures. Composite Structures, 153, 866-875. https://doi.org/10.1016/j.compstruct.2016.07.018

Miller, A. T., Safranski, D. L., Wood, C., Guldberg, R. E., & Gall, K. (2017). Deformation and fatigue of tough 3D printed elastomer scaffolds processed by fused deposition modeling and continuous liquid interface production. Journal of the Mechanical Behavior of Biomedical Materials, 75, 1-13. https://doi.org/10.1016/j.jmbbm.2017.06.038

Mulrennan, K., Donovan, J., Creedon, L., Rogers, I., Lyons, J. G., & McAfee, M. (2018). A soft sensor for prediction of mechanical properties of extruded PLA sheet using an instrumented slit die and machine learning algorithms. Polymer Testing, 69, 462-469. https://doi.org/10.1016/j.polymertesting.2018.06.002

Ngo, T. D., Kashani, A., lzano, G., Nguyen, K. T. Q., & Hui, D. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering, 143, 172-196, https://doi.org/10.1016/j.compositesb.2018.02.012

Pinto, V. C., Ramos, T., Alves, A. S. F., Xavier, J., Tavares, P. J., Moreira, P. M. G. P., & Guedes, R. M. (2017). Dispersion and failure analysis of PLA, PLA/GNP and PLA/CNT-COOH biodegradable nanocomposites by SEM and DIC inspection. Engineering Failure Analysis, 71, 63-71. https://doi.org/10.1016/j.engfailanal.2016.06.009

Przybytek, A., Sienkiewicz, M., Kucińska-Lipka, J., & Janik, H. (2018). Preparation and characterization of biodegradable and compostable PLA/TPS/ESO compositions. Industrial Crops and Products, 122, 375-383. https://doi.org/10.1016/j.indcrop.2018.06.016

Scaffaro, R., Lopresti, F., & Botta, L. (2018). PLA based biocomposites reinforced with Posidonia oceanica leaves. Composites Part B: Engineering, 139, 1-11. https://doi.org/10.1016/j.compositesb.2017.11.048

Song, Y., Li, Y., Song, W., Yee, K., Lee, K. Y., & Tagarielli, V. L. (2017). Measurements of the mechanical response of unidirectional 3D-printed PLA. Materials and Design, 123, 154-164. https://doi.org/10.1016/j.matdes.2017.03.051

Sood, A. K., Ohdar, R. K., & Mahapatra, S. S. (2010). Parametric appraisal of mechanical property of fused deposition modelling processed parts. Materials and Design, 31(1), 287-295. https://doi.org/10.1016/j.matdes.2009.06.016

Spiridon, I., & Tanase, C. E. (2018). Design, characterization and preliminary biological evaluation of new lignin-PLA biocomposites. International Journal of Biological Macromolecules, 114, 855-863. https://doi.org/10.1016/j.ijbiomac.2018.03.140

Szykiedans, K., Credo, W., & Osiński, D. (2017). Selected mechanical properties of PETG 3-D prints. Procedia Engineering, 177, 455-461. https://doi.org/10.1016/j.proeng.2017.02.245

Talbamrung, T., Kasemsook, C., Sangtean, W., Wachirahuttapong, S., & Thongpin, C. (2016). Effect of peroxide and organoclay on thermal and mechanical properties of PLA in PLA/NBR melted blend. Energy Procedia, 89, 274-281. https://doi.org/10.1016/j.egypro.2016.05.035

Tian, X., Liu, T., Yang, C., Wang, Q., & Li, D. (2016). Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites. Composites Part A: Applied Science and Manufacturing, 88, 198-205. https://doi.org/10.1016/j.compositesa.2016.05.032

Weng, Z., Wang, J., Senthil, T., & Wu, L. (2016). Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing. Materials and Design, 102, 276-283. https://doi.org/10.1016/j.matdes.2016.04.045

Zhao, X. G., Hwang, K. J., Lee, D., Kim, T., & Kim, N. (2018). Enhanced mechanical properties of self-polymerized polydopamine-coated recycled PLA filament used in 3D printing. Applied Surface Science, 441, 381-387. https://doi.org/10.1016/j.apsusc.2018.01.257

Zhou, Y., Lei, L., Yang, B., Li, J., & Ren, J. (2018). Preparation and characterization of polylactic acid (PLA) carbon nanotube nanocomposites. Polymer Testing, 68, 34-38. https://doi.org/10.1016/j.polymertesting.2018.03.044

Zou, R., Xia, Y., Liu, S., Hu, P., Hou, W., Hu, Q., & Shan, C. (2016). Isotropic and anisotropic elasticity and yielding of 3D printed material. Composites Part B: Engineering, 99, 506-513. https://doi.org/10.1016/j.compositesb.2016.06.009