Ranking range based approach to MADM under incomplete context and its application in venture investment evaluation
Abstract
In real-world Multiple Attribute Decision Making (MADM) problem, the attribute weights information may be unknown or partially known. Several approaches have been suggested to address this kind of incomplete MADM problem. However, these approaches depend on the determination of attribute weights, and setting different attribute weight vectors may result in different ranking positions of alternatives. To deal with this issue, this paper develops a novel MADM approach: the ranking range based MADM approach. In the novel MADM approach, the minimum and maximum ranking positions of every alternative are generated using several optimization models, and the average ranking position of every alternative is produced applying the Monte Carlo simulation method. Then, the minimum, maximum and average ranking positions of the alternative are integrated into a new ranking position of the alternative. This novel approach is capable of dealing with venture investment evaluation problems. However, in the venture investment evaluation process, decision makers will present different risk attitudes. To deal with this issue, two ranking range based MADM approaches with risk attitudes are further designed. A case study and a simulation experiment are presented to show the validity of the proposal.
First published online 12 July 2019
Keyword : multiple attribute decision making, ranking range, incomplete attribute weights, venture investment evaluation, risk attitudes
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Barrot, J. N. (2016). Investor horizon and the life cycle of innovative firms: Evidence from venture capital. Management Science, 7(19), 3021-3043. https://doi.org/10.1287/mnsc.2016.2482
Butler, J., Morrice, D. J., & Mullarkey, P. W. (2001). A multiple attribute utility theory approach to ranking and selection. Management Science, 47(6), 800-816. https://doi.org/10.1287/mnsc.47.6.800.9812
Cabrerizo, F. J., Al-Hmouz, R., Morfeq, A., Balamash, A. S., Martínez, M. A., & Herrera-Viedma, E. (2017). Soft consensus measures in group decision making using unbalanced fuzzy linguistic information. Soft Computing, 21(11), 3037-3050. https://doi.org/10.1007/s00500-015-1989-6
Cabrerizo, F. J., Herrera-Viedma, E., & Pedrycz, W. (2013). A method based on PSO and granular computing of linguistic information to solve group decision making problems defined in heterogeneous contexts. European Journal of Operational Research, 230(3), 624-633. https://doi.org/10.1016/j.ejor.2013.04.046
Chen, X., Zhang, H. J., & Dong, Y. C. (2015). The fusion process with heterogeneous preference structures in group decision making: A survey. Information Fusion, 24, 72-83. https://doi.org/10.1016/j.inffus.2014.11.003
Cid-López, A., Hornos, M. J., Carrasco-Gónzález, R. A., & Herrera-Viedma, E. (2018). Prioritization of the launch of ICT products and services through linguistic multi-criteria decision-making. Technological and Economic Development of Economy, 24(3), 1231-1257. https://doi.org/10.3846/tede.2018.1423
Danielson, M., Ekenberg, L., & He, Y. (2014). Augmenting ordinal methods of attribute weight approximation. Decision Analysis, 11(1), 21-26. https://doi.org/10.1016/j.ejor.2015.08.058
de Almeida, A. T., de Almeida, J. A., Costa, A. P. C. S., & de Almeida-Filho, A. T. (2016). A new method for elicitation of criteria weights in additive models: Flexible and interactive tradeoff. European Journal of Operational Research, 250(1), 179-191. https://doi.org/10.1016/j.ejor.2015.08.058
Dong, Y. C., Liu, Y. T., Liang, H. M., Chiclana, F., & Herrera-Viedma, E. (2018a). Strategic weight manipulation in multiple attribute decision making. Omega, 75, 154-164. https://doi.org/10.1016/j.omega.2017.02.008
Dong, Y. C., Zha, Q. B., Zhang, H. J., Kou, G., Fujita, H., Chiclana, F., & Herrera-Viedma, E. (2018b). Consensus reaching in social network group decision making: Research paradigms and challenges. Knowledge-Based Systems, 162, 3-13. https://doi.org/10.1016/j.knosys.2018.06.036
Dong, Y. C., Zhang, H. J., & Herrera-Viedma, E. (2016). Consensus reaching model in the complex and dynamic MAGDM problem. Knowledge-based Systems, 106, 206-219. https://doi.org/10.1016/j.knosys.2016.05.046
Dong, Y. C., Zhao, S. H., Zhang, H. J., Chiclana, F., & Herrera-Viedma, E. (2018c). A self-management mechanism for non-cooperative behaviors in large-scale group consensus reaching processes. IEEE Transactions on Fuzzy Systems, 26(6), 3276-3288. https://doi.org/10.1109/TFUZZ.2018.2818078
Fan, Z. P., Ma, J., & Zhang, Q. (2002). An approach to multiple attribute decision making based on fuzzy preference information on alternatives. Fuzzy Sets and Systems, 131(1), 101-106. https://doi.org/10.1016/S0165-0114(01)00258-5
Fried, V. H., & Hisrich, R. D. (1994). Toward a model of venture capital investment decision making. Financial Management, 23(3), 28-37. Retrieved from https://www.jstor.org/stable/3665619
Gomes, L., & Lima, M. (1992). TODIM: Basics and application to multicriteria ranking of projects with environmental impacts. Foundations of Computing and Decision Sciences, 16(3-4), 113-127.
Gong, Z. W., Xu, X. X., Zhang, H. H., & Herrera-Viedma, E. (2015). The consensus models with interval preference opinions and their economic interpretation, Omega, 55, 81-90. https://doi.org/10.1016/j.omega.2015.03.003
Hall, J., & Hofer, C. W. (1993). Venture capitalists’ decision criteria in new venture evaluation. Journal of Business Venturing, 8(1), 25-42. https://doi.org/10.1016/0883-9026(93)90009-T
Ishizaka, A., & Nemery, P. (2013). Multi-criteria decision analysis: methods and software. John Wiley & Sons. https://doi.org/10.1002/9781118644898
Kabak, Ö., & Ervural, B. (2017). Multiple attribute group decision making: A generic conceptual framework and a classification scheme. Knowledge-Based Systems, 123, 13-30. https://doi.org/10.1016/j.knosys.2017.02.011
Karni, R., Sanchez, P., & Tummala, V. M. R. (1990). A comparative study of multiattribute decision making methodologies. Theory and Decision, 29(3), 203-222. https://doi.org/10.1007/BF00126802
Keeney, R. L., & Raiffa, H. (1976). Decisions with multiple objectives. New York: John Wiley&Sons.
Li, C. C., Dong, Y. C., & Herrera, F. (2019). A consensus model for large-scale linguistic group decision making with a feedback recommendation based on clustered personalized individual semantics and opposing consensus groups. IEEE Transactions on Fuzzy Systems, 27(2), 221-233. https://doi.org/10.1109/TFUZZ.2018.2857720
Li, C. C., Rodríguez, R. M., Martínez, L., Dong, Y. C., & Herrera, F. (2018). Personalized individual semantics based on consistency in hesitant linguistic group decision making with comparative linguistic expressions. Knowledge-Based Systems, 145, 156-165. https://doi.org/10.1016/j.knosys.2018.01.011
Liao, H. C., Xu, Z. S., Herrera-Viedma, E., & Herrera, F. (2018). Hesitant fuzzy linguistic term set and its application in decision making: A state-of-the-art survey. International Journal of Fuzzy Systems, 20(7), 2084-2110. https://doi.org/10.1007/s40815-017-0432-9
Liu, W. Q., Dong, Y. C., Chiclana, F., Cabrerizo, F. J., & Herrera-Viedma, E. (2017). Group decisionmaking based on heterogeneous preference relations with self-confidence. Fuzzy Optimization and Decision Making, 16(4), 429-447. https://doi.org/10.1007/s10700-016-9254-8
Liu, Y. T., Dong, Y. C., Liang, H. M., Chiclana, F., & Herrera-Viedma, E. (2018). Multiple attribute strategic weight manipulation with minimum cost in a group decision making context with interval attribute weights information. IEEE Transactions on Systems, Man, and Cybernetics: Systems (in Press). https://doi.org/10.1109/TSMC.2018.2874942
López, J. C. L., Carrillo, P. A. Á., Chavira, D. A. G., & Noriega, J. J. S. (2017). A web-based group decision support system for multicriteria ranking problems. Operational Research, 17(2), 499-534. https://doi.org/10.1007/s12351-016-0234-0
Mareschal, B., Brans, J. P., & Vincke, P. (1984). PROMETHEE: A new family of outranking methods in multicriteria analysis. ULB--Universite Libre de Bruxelles.
Morente-Molinera, J. A., Kou, G., Pang, C., Cabrerizo, J., & Herrera-Viedma, E. (2019). An automatic procedure to create fuzzy ontologies from users’ opinions using sentiment analysis procedures and multi-granular fuzzy linguistic modelling methods. Information Sciences, 476, 222-238. https://doi.org/10.1016/j.ins.2018.10.022
Nanda, R., & Rhodes-Kropf, M. (2016). Financing risk and innovation, Management Science, 63(4), 901-918. https://doi.org/10.1287/mnsc.2015.2350
Opricovic, S. (1998). Multicriteria optimization of civil engineering systems. Belgrade: University of Belgrade.
Opricovic, S., & Tzeng, G. H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156(2), 445-455. https://doi.org/10.1016/S0377-2217(03)00020-1
Pérez, I. J., Cabrerizo, F. J., Alonso, S., & Herrera-Viedma, E. (2014). A new consensus model for group decision making problems with non homogeneous experts. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 44(4), 494-498. https://doi.org/10.1109/TSMC.2013.2259155
Pérez, I. J., Cabrerizo, F. J., Alonso, S., Dong, Y. C., Chiclana, F., & Herrera-Viedma, E. (2018). On dynamic consensus processes in group decision making problems. Information Science, 459, 20-35. https://doi.org/10.1016/j.ins.2018.05.017
Roy, B., & Bertier, B. (1972). La metode ELECTRE II. In Sixieme Conference internationale de rechearche operationelle. Dublin.
Saaty, T. L. (2013). The modern science of multicriteria decision making and its practical applications: the AHP/ANP approach. Operations Research, 61(5), 1101-1118. https://doi.org/10.1287/opre.2013.1197
Saaty, T. L. (1981). The analytic hierarchy process. McGraw-Hill.
Shevchenko, G., Ustinovichius, L., & Andruškevičius, A. (2008). Multi-attribute analysis of investments risk alternatives in construction. Technological and Economic Development of Economy, 14(3), 428443. https://doi.org/10.3846/1392-8619.2008.14.428-443
Singh, A., Gupta, A., & Mehra, A. (2017). Energy planning problems with interval-valued 2-tuple linguistic information. Operational Research, 17(3), 821-848. https://doi.org/10.1007/s12351-016-0245-x
Siskos, J., & Zopounidis, C. (1987). The evaluation criteria of the venture capital investment activity: An interactive assessment. European Journal of Operational Research, 31(3), 304-313. https://doi.org/10.1016/0377-2217(87)90040-3
Sun, B. Z., & Ma, W. M. (2015). An approach to consensus measurement of linguistic preference relations in multi-attribute group decision making and application. Omega, 51, 83-92. https://doi.org/10.1016/j.omega.2014.09.006
Townsend, R. R. (2015). Propagation of financial shocks: The case of venture capital. Management Science, 61(11), 2782-2802. https://doi.org/10.1287/mnsc.2014.2110
Tyebjee, T., & Bruno, A. (1984). A model of venture capitalist investment activity. Management Science, 30(9), 1051-1066. https://doi.org/10.1287/mnsc.30.9.1051
Ureña, R., Kou, G., Dong, Y. C., Chiclana, F., & Herrera-Viedma, E. (2019). A review on trust propagation and opinion dynamics in social networks and group decision making frameworks. Information Sciences, 478, 461-475. https://doi.org/10.1016/j.ins.2018.11.037
von Winterfeldt, D., & Edwards, W. (1986). Decisional analysis and behavioral research. New York: Cambridge University Press.
Wallenius, J., Dyer, J. S., Fishburn P. C., Steuer R. E., Zionts S., & Deb, K. (2008). Multiple criteria decision making, multiattribute utility theory: Recent accomplishments and what lies ahead. Management Science, 54(7), 1336-1349. https://doi.org/10.1287/mnsc.1070.0838
Wu, J., & Liu, Y. J. (2013). An approach for multiple attribute group decision making problems with interval-valued intuitionistic trapezoidal fuzzy numbers. Computers & Industrial Engineering, 66(2), 311-324. https://doi.org/10.1016/j.cie.2013.07.001
Wu, J., Cao, Q. W., & Li, H. (2016). An approach for MADM problems with interval-valued intuitionistic fuzzy sets based on nonlinear functions. Technological and Economic Development of Economy, 22(3), 336-356. https://doi.org/10.3846/20294913.2014.989931
Wu, J., Chiclana, F., & Herrera-Viedma, E. (2015). Trust based consensus model for social network in an incomplete linguistic information contex. Applied Soft Computing, 35, 827-839. https://doi.org/10.1016/j.asoc.2015.02.023
Wu, Y. Z., Li, C. C., Chen, X., & Dong, Y. C. (2018). Group decision making based on linguistic distributions and hesitant assessments: Maximizing the support degree with an accuracy constraint. Information Fusion, 41, 151-160. https://doi.org/10.1016/j.inffus.2017.08.008
Wu, Z. B., & Xu, J. P. (2016). Possibility distribution-based approach for MAGDM with hesitant fuzzy linguistic information. IEEE Transactions on Cybernetics, 46(3), 694-705. https://doi.org/10.1109/TCYB.2015.2413894
Xu, Y. J., Wang, H. M., & Merigó, J. M. (2014). Intuitionistic fuzzy Einstein Choquet integral operator for multiple attribute decision making. Technological and Economic Development of Economy, 20(2), 227-253. https://doi.org/10.3846/20294913.2014.913273
Yager, R. R. (1988). On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Transactions on Systems, Man, and Cybernetics, 18(1), 183-190. https://doi.org/10.1109/21.87068
Yager, R. R. (2016). Modeling multi-criteria objective functions using fuzzy measures. Information Fusion, 29, 105-111. https://doi.org/10.1016/j.inffus.2015.07.007
Yoon, K. (1987). A reconciliation among discrete compromise solutions. Journal of Operational Research Society, 38(3), 272-286. https://doi.org/10.1057/jors.1987.44
Yoon, K., & Hwang, C. L. (1981). Multiple attribute decision making: methods and applications. Berlin: Springer.
Yu, W. Y., Zhang, Z., Zhong, Y. Q., & Sun, L. L. (2017). Extended TODIM for multi-criteria group decision making based on unbalanced hesitant fuzzy linguistic term sets. Computers & Industrial Engineering, 114, 316-328. https://doi.org/10.1016/j.cie.2017.10.029
Zanakis, S. H., Solomon, A., Wishart, N., & Dublish, S. (1998). Multi-attribute decision making: a simulation comparison of select methods. European Journal of Operational Research, 107(3), 507529. https://doi.org/10.1016/S0377-2217(97)00147-1
Zaveckaite, A., & Ulbinaite, A. (2018). Assessment criteria of project risk management in language translation service companies. Technological and Economic Development of Economy, 24(4), 13231343. https://doi.org/10.3846/20294913.2017.1295287
Zeleny, M. (1982). Multiple criteria decision making. New York: Mc-Graw-Hill.
Zhang, H. J., Dong, Y. C., & Chen, X. (2018). The 2-rank consensus reaching model in the multigranular linguistic multiple-attribute group decision-making. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48, 2080-2094. https://doi.org/101109/TSMC20172694429
Zhang, H. J., Dong, Y. C., Palomares, I., & Zhou, H. W. (2019). Failure mode and effect analysis in a linguistic context: A consensus-based multi-attribute group decision-making approach. IEEE Transactions on Reliability, 68(2), 566-582. https://doi.org/10.1109/TR.2018.2869787
Zhang, H. J., Dong, Y. C., Chiclana, F., & Yu, S. (2019). Consensus efficiency in group decision making: A comprehensive comparative study and its optimal design. European Journal of Operational Research, 275(2), 580-598. https://doi.org/10.1016/j.ejor.2018.11.052
Zhang, Z., Guo, C. H., & Martínez, L. (2017). Managing multigranular linguistic distribution assessments in large-scale multiattribute group decision making. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(11), 3063-3076. https://doi.org/10.1109/TSMC.2016.2560521
Zhang, B. W., Liang, H. M., & Zhang, G. Q. (2018). Reaching a consensus with minimum adjustment in MAGDM with hesitant fuzzy linguistic term sets. Information Fusion, 42, 12-23. https://doi.org/10.1016/j.inffus.2017.08.006
Zhang, B. W., Dong, Y. C., & Herrera-Viedma, E. (2019). Group decision making with heterogeneous preference structures: An automatic mechanism to support consensus reaching. Group Decision and Negotiation, 28(3), 585-617. https://doi.org/10.1007/s10726-018-09609-y