A SD-IITFOWA operator and TOPSIS based approach for MAGDM problems with intuitionistic trapezoidal fuzzy numbers
Abstract
The aim of this article is to investigate an approach to multiple attribute group decision making (MAGDM) problems in which the information about decision makers (DMs) weights is completely unknown in advance, the attributes are inter-dependent, and the attribute values take the form of intuitionistic trapezoidal fuzzy numbers. First, the concept of similarity degree (SD) for two intuitionistic trapezoidal fuzzy decision matrixes is defined, which measures the level of consensus between individual decision opinion and group decision opinion. Next, we develop some IITFOWA operators to aggregate intuitionistic trapezoidal fuzzy decision matrixes in MAGDM problems. In particular, we present the SD induced IITFOWA (SD-IITFOWA) operator, which induces the order of argument values by utilizing the similarity degree of decision makers. This operator aggregates individual opinion in such a way that more importance is placed on the most similarity one. Then, a SD-IITFOWA operator and TOPSIS method based approach is developed to solve the MAGDM problems with intuitionistic trapezoidal fuzzy numbers. Finally, the developed approach is used to select the right suppliers for a computer company.
Keyword : group decision making, multiple attribute decision making, nduced intuitionistic trapezoidal fuzzy ordered weighted arithmetic (IITFOWA) operator, TOPSIS
This work is licensed under a Creative Commons Attribution 4.0 International License.