Economic growth, air pollution, and government environmental regulation: evidence from 287 prefecture-level cities in China
Abstract
Air pollution control is crucial for promoting the modernization of governance systems and efficiency. To address the subjective contrived factors and errors in the gross domestic product (GDP) data in traditional statistical almanacs, our study aims to construct a panel data model of 287 prefecture-level cities for the period from 1998–2016 (using objective nighttime light data). We also used government work report words related to environmental regulation to characterize the constraints of government environmental regulations. For this purpose, we used instrumental variables (to explore the relationship and interaction between air pollution and economic growth) and a model setting, with which we carried out regression analysis and robustness tests; the findings were validated using a transmission mechanism hypothesis. We found that that economic growth and air pollution positively influence each other and government environmental regulations significantly reduce air pollution. We also found that to achieve high economic development, environmental pollution must be controlled to avoid further damage to human and material capital. Furthermore, government environmental regulations can help improve the environmental comfort level and economic development quality.
First published online 7 June 2021
Keyword : economic growth, PM2.5, air pollution, environmental governance, nighttime light data
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Chen, J. D., Gao, M., Cheng, S., Hou, W., Song, M., Liu, X., Liu, Y., & Shan, Y. (2020a). County-level CO2 emissions and sequestration in China during 1997–2017. Scientific Data, 7, 391. https://doi.org/10.1038/s41597-020-00736-3
Chen, J. D., Wang, B., Huang, S., & Song, M. L. (2020b). The influence of increased population density in China on air pollution. Science of The Total Environment, 735, 139456. https://doi.org/10.1016/j.scitotenv.2020.139456
Chen, Z., Kahn, M. E., Liu, Y., & Wang, Z. (2018). The consequences of spatially differentiated water pollution regulation in China. Journal of Environmental Economics and Management, 88, 468–485. https://doi.org/10.1016/j.jeem.2018.01.010
Dubey, R., Gunasekaran, A., Childe, S. J., Papadopoulos, T., Luo, Z. W., Wamba, S. F., & Roubaud, D. (2019). Can big data and predictive analytics improve social and environmental sustainability? Technological Forecasting and Social Change, 144, 534–545. https://doi.org/10.1016/j.techfore.2017.06.020
Egbetokun, S., Osabuohien, E., Akinbobola, T., Onanuga, O. T., Gershon, O., & Okafor, V. (2020). Environmental pollution, economic growth and institutional quality: Exploring the nexus in Nigeria. Management of Environmental Quality, 31(1), 18–31. https://doi.org/10.1108/MEQ-02-2019-0050
Fan, X. M., & Xu, Y. Z. (2020). Convergence on the haze pollution: City-level evidence from China. Atmospheric Pollution Research, 11(6) 141–152. https://doi.org/10.1016/j.apr.2020.03.004
Gong, X. M., Zhang, J. P., Zhang, H. R., Cheng, M. W., Wang, F., & Yu, N. (2020). Internet use encourages pro-environmental behavior: Evidence from China. Journal of Cleaner Production, 256, 120725. https://doi.org/10.1016/j.jclepro.2020.120725
Goodness, C. A., & Prosper, E. E. (2017). Effect of economic growth on CO2 emission in developing countries: Evidence from a dynamic panel threshold model. Cogent Economics & Finance, 5(1), 1379239. https://doi.org/10.1080/23322039.2017.1379239
Grossman, G. M., & Krueger, A. B. (1991). Environmental impacts of a North American free trade agreement (NBER Working Papers No. 3914). National Bureau of Economic Research. https://doi.org/10.3386/w3914
Grossman, G. M., & Krueger, A. B. (1995). Economic growth and the environment. The Quarterly Journal of Economics, 110(2), 353–377. https://doi.org/10.2307/2118443
Han, F., & Li, J. M. (2020). Assessing impacts and determinants of China’s environmental protection tax on improving air quality at provincial level based on Bayesian statistics. Journal of Environmental Management, 271, 111017. https://doi.org/10.1016/j.jenvman.2020.111017
Hanaoka, T., & Masui, T. (2020). Exploring effective short-lived climate pollutant mitigation scenarios by considering synergies and trade-offs of combinations of air pollutant measures and low carbon measures towards the level of the 2 °C target in Asia. Environmental Pollution, 261, 113650. https://doi.org/10.1016/j.envpol.2019.113650
Hao, Y., Peng, H., Temulun, T., Liu, L. Q., Mao, J., Lu, Z. N., & Chen, H. (2018). How harmful is air pollution to economic development? New evidence from PM2.5 concentrations of Chinese cities. Journal of Cleaner Production, 172, 743–757. https://doi.org/10.1016/j.jclepro.2017.10.195
He, G. Y., Chen, Y. S., Wang, S. H., Dong, Y. Q., Ju, G. D., & Chen, B. W. (2020). The association between PM2.5 and depression in China. Dose-Response, 18(3). https://doi.org/10.1177/1559325820942699
Henderson, J. V., Storeygard, A., & Weil, D. N. (2012). Measuring economic growth from outer space. American Economic Review, 102(2), 994–1028. https://doi.org/10.1257/aer.102.2.994
Hering, L., & Poncet, S. (2014). Environmental policy and exports: Evidence from Chinese cities. Journal of Environmental Economics and Management, 68(2), 296–318. https://doi.org/10.1016/j.jeem.2014.06.005
Iacobuta, A. O., Mursa, G. C., Mihai, C., Cautisanu, C., & Cismas, L. M. (2019). Institutions and sustainable development: A cross-country analysis. Transformations in Business & Economics, 18, 628–646.
Ji, G. X., Tian, L., Zhao, J. C., Yue, Y. L., & Wang, Z. (2019a). Detecting spatiotemporal dynamics of PM2.5 emission data in China using DMSP-OLS nighttime stable light data. Journal of Cleaner Production, 209, 363–370. https://doi.org/10.1016/j.jclepro.2018.10.285
Ji, X. L., Li, X. Z., He, Y. Q., & Liu, X. L. (2019b). A simple method to improve estimates of county-level economics in china using nighttime light data and GDP growth rate. ISPRS International Journal of Geo-Information, 8(9), 419. https://doi.org/10.3390/ijgi8090419
Jiang, P., Yang, J., Huang, C. H., & Liu, H. K. (2018). The contribution of socioeconomic factors to PM2.5 pollution in urban China. Environmental Pollution, 233, 977–985. https://doi.org/10.1016/j.envpol.2017.09.090
Kacprzyk, A., & Kuchta, Z. (2020). Shining a new light on the environmental Kuznets curve for CO2 emissions. Energy Economics, 87, 104704. https://doi.org/10.1016/j.eneco.2020.104704
Lin, B. Q., & Jia, Z. J. (2019). What will China’s carbon emission trading market affect with only electricity sector involvement? A CGE based study. Energy Economics, 78, 301–311. https://doi.org/10.1016/j.eneco.2018.11.030
Lin, F. Q. (2017). Trade openness and air pollution: City-level empirical evidence from China. China Economic Review, 45, 78–88. https://doi.org/10.1016/j.chieco.2017.07.001
Liu, Q. Q., Wang, S. J., Zhang, W. Z., Li, J. M., & Dong, G. P. (2019). The effect of natural and anthropogenic factors on PM2.5: Empirical evidence from Chinese cities with different income levels. Science of The Total Environment, 653, 157–167. https://doi.org/10.1016/j.scitotenv.2018.10.367
Liu, Y., & Lu, Y. Y. (2015). The Economic impact of different carbon tax revenue recycling schemes in China: A model-based scenario analysis. Applied Energy, 141(1), 96–105. https://doi.org/10.1016/j.apenergy.2014.12.032
Ma, T., Zhou, C. H., Pei, T., Haynie, S., & Fan, J. F. (2012). Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: A comparative case study from China’s cities. Remote Sensing of Environment, 124, 99–107. https://doi.org/10.1016/j.rse.2012.04.018
Maji, K. J., Ye, W. F., Arora, M., & Nagendra, S. M. S. (2018). PM2.5 -related health and economic loss assessment for 338 Chinese cities. Environment International, 121(1), 392–403. https://doi.org/10.1016/j.envint.2018.09.024
Masiol, M., Hopke, P. K., Felton, H. D., Frank, B. P., Rattigan, O. V., Wurth, M. J., & LaDuke, G. H. (2017). Source apportionment of PM2.5 chemically speciated mass and particle number concentrations in New York City. Atmospheric Environment, 148, 215–229. https://doi.org/10.1016/j.atmosenv.2016.10.044
Ouyang, X., Shao, Q. L., Zhu, X., He, Q. Y., Xiang, C., & Wei, G. E. (2019). Environmental regulation, economic growth and air pollution: Panel threshold analysis for OECD countries. Science of The Total Environment, 657, 234–241. https://doi.org/10.1016/j.scitotenv.2018.12.056
Peng, X. (2020). Strategic interaction of environmental regulation and green productivity growth in China: Green innovation or pollution refuge? Science of The Total Environment, 732, 139200. https://doi.org/10.1016/j.scitotenv.2020.139200
Ren, L. N., & Matsumoto, K. (2020). Effects of socioeconomic and natural factors on air pollution in China: A spatial panel data analysis. Science of The Total Environment, 740, 140155. https://doi.org/10.1016/j.scitotenv.2020.140155
Shi, T., Hu, Y., Liu, M., Li, C., Zhang, C., & Liu, C. (2020). How do economic growth, urbanization, and industrialization affect fine particulate matter concentrations? An assessment in Liaoning Province, China. International Journal of Environmental Research and Public Health, 17(15), 5441. https://doi.org/10.3390/ijerph17155441
Song, C. B., He, J. J., Wu, L., Jin, T. S., Chen, X., Li, R. P., Ren, P. P., Zhang, L., & Mao, H. J. (2017). Health burden attributable to ambient PM2.5 in China. Environmental Pollution, 223, 575–586. https://doi.org/10.1016/j.envpol.2017.01.060
Song, Y., Zhou, A., Zhang, M., & Wang, H. (2019). Assessing the effects of haze pollution on subjective well-being based on Chinese General Social Survey. Journal of Cleaner Production, 235, 574–582. https://doi.org/10.1016/j.jclepro.2019.07.021
Stern, D. I., & Zha, D. L. (2016). Economic growth and particulate pollution concentrations in China. Environmental Economics and Policy Studies, 18, 327–338. https://doi.org/10.1007/s10018-016-0148-3
Tan, X. J., Liu., Y., Cui, J. B., & Su, B. (2018). Assessment of carbon leakage by channels: An approach combining CGE model and decomposition analysis. Energy Economics, 74, 535–545. https://doi.org/10.1016/j.eneco.2018.07.003
Wang, S. J., Fang, C. L., Guan, X. L., Pang, B., & Ma, H. T. (2014). Urbanisation, energy consumption, and carbon dioxide emissions in China: A panel data analysis of China’s provinces. Applied Energy, 136(C), 738–749. https://doi.org/10.1016/j.apenergy.2014.09.059
Wang, S. J., Liu, X. P., Yang, X., Zou, B., & Wang, J. Y. (2018). Spatial variations of PM2.5 in Chinese cities for the joint impacts of human activities and natural conditions: A global and local regression perspective. Journal of Cleaner Production, 203, 143–152. https://doi.org/10.1016/j.jclepro.2018.08.249
Wang, S. J., Fang, C. L., Sun, L. X., Su, Y. X., Chen, X. Z., Zhou, C. S., Feng, K. S., & Hubacek, K. (2019). Decarbonizing China’s urban agglomerations. Annals of the American Association of Geographers, 109(1), 266–285. https://doi.org/10.1080/24694452.2018.1484683
Wang, Y., & Komonpipat, S. (2020). Revisiting the environmental Kuznets curve of PM2.5 concentration: Evidence from prefecture-level and above cities of China. Environmental Science and Pollution Research, 27, 9336–9348. https://doi.org/10.1007/s11356-020-07621-x
Wang, Y., Zhang, C., Lu, A., Li, L., He, Y., ToJo, J., & Zhu, X. (2017). A disaggregated analysis of the environmental Kuznets curve for industrial CO2 emissions in China. Applied Energy, 190, 172–180. https://doi.org/10.1016/j.apenergy.2016.12.109
Wang, Z. L., & Zhu, Y. F. (2020). Do energy technology innovations contribute to CO2 emissions abatement? A spatial perspective. Science of the Total Environment, 726, 138574. https://doi.org/10.1016/j.scitotenv.2020.138574
Wolde-Rufael, Y., & Idowu, S. (2017). Income distribution and CO2 emission: A comparative analysis for China and India. Renewable and Sustainable Energy Reviews, 74, 1336–1345. ttps://doi.org/10.1016/j.rser.2016.11.149
Wosiek, M. (2020). Rural?urban divide in human capital in Poland after 1988. Oeconomia Copernicana, 11(1), 183–201. https://doi.org/10.24136/oc.2020.008
Wu, H. T., Li, Y. W., Hao, Y., Ren, S. Y., & Zhang, P. F. (2020). Environmental decentralization, local government competition, and regional green development: Evidence from China. Science of The Total Environment, 708, 135085. https://doi.org/10.1016/j.scitotenv.2019.135085
Xie, Q. C., Xu, X., & Liu, X. Q. (2019). Is there an EKC between economic growth and smog pollution in China? New evidence from semiparametric spatial autoregressive models. Journal of Cleaner Production, 220, 873–883. https://doi.org/10.1016/j.jclepro.2019.02.166
Xu, B., Luo, LQ., & Lin, BQ. (2016). A dynamic analysis of air pollution emissions in China: Evidence from nonparametric additive regression models. Ecological Indicators, 63, 346–358. https://doi.org/10.1016/j.ecolind.2015.11.012
Xu, G., Feng, X., Li, Y., Chen, X., & Jia, J. (2017). Environmental risk perception and its influence on well-being. Chinese Management Studies, 11(1), 35–50. https://doi.org/10.1108/CMS-12-2016-0261
Xu, F. J., Huang, Q. X., Yue, H. B., He, C. Y., Wang, C. B., & Zhang, H. (2020). Reexamining the relationship between urbanization and pollutant emissions in China based on the STIRPAT model. Journal of Environmental Management, 273, 111134. https://doi.org/10.1016/j.jenvman.2020.111134
Xu, S. C., Miao, Y. M., Gao, C., Long, R. Y., Chen, H., Zhao, B., & Wang, S. X. (2019). Regional differences in impacts of economic growth and urbanization on air pollutants in China based on provincial panel estimation. Journal of Cleaner Production, 208, 340–352. https://doi.org/10.1016/j.jclepro.2018.10.114
Yan, D., Ren, X. H., Kong, Y., Ye, B., & Liao, Z. Y. (2020). The heterogeneous effects of socioeconomic determinants on PM2.5 concentrations using a two-step panel quantile regression. Applied Energy, 272, 115246. https://doi.org/10.1016/j.apenergy.2020.115246
Yue, Y. L., Tian, L., Yue, Q., & Wang, Z. (2020). Spatiotemporal variations in energy consumption and their influencing factors in China based on the integration of the DMSP-OLS and NPP-VIIRS nighttime light datasets. Remote Sensing, 12(7), 1151. https://doi.org/10.3390/rs12071151
Zeng, Y. Y., Cao, Y. F., Qiao, X., Barnabas, C. S., & Tang, Y. (2019). Air pollution reduction in China: Recent success but great challenge for the future. Science of The Total Environment, 663, 329–337. https://doi.org/10.1016/j.scitotenv.2019.01.262
Zhang, Q. L., & Seto, K. C. (2011). Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sensing of Environment, 115(9), 2320– 2329. https://doi.org/10.1016/j.rse.2011.04.032
Zhang, W. W., Zhao, B., Gu, Y., Sharp, B., Xu, S. C., & Liou, K. N. (2020). Environmental impact of national and subnational carbon policies in China based on a multi-regional dynamic CGE model. Journal of Environmental Management, 270, 110901. https://doi.org/10.1016/j.jenvman.2020.110901
Zhang, Y., & Chen, J. J. (2020). An empirical study of the efficiency of haze pollution governance in Chinese cities based on streaming data. Science of the Total Environment, 739, 139571. https://doi.org/10.1016/j.scitotenv.2020.139571
Zhao, J. C., Ji, G. X., Yue, Y. L., Lai, Z. Z., Chen, Y. L., Yang, D. Y., Yang, X., & Wang, Z. (2019). Spatiotemporal dynamics of urban residential CO2 emissions and their driving forces in China using the integrated two nighttime light datasets. Applied Energy, 235, 612–624. https://doi.org/10.1016/j.apenergy.2018.09.180
Zhao, Q., & Yuan, C. H. (2020). Did haze pollution harm the quality of economic development? – An empirical study based on China’s PM2.5 concentrations. Sustainability, 12(4), 1607. https://doi.org/10.3390/su12041607
Zheng, H. Z., & Xu, L. Y. (2020). Production and consumption-based primary PM2.5 emissions: Empirical analysis from China’s interprovincial trade. Resources, Conservation and Recycling, 155, 104661. https://doi.org/10.1016/j.resconrec.2019.104661