Can Bitcoin be a safe haven in fear sentiment?
Abstract
This paper explores how fear sentiment affects the price of Bitcoin by employing the rolling-window Granger causality tests. The analysis reveals negative influences from the volatility index (VIX) to Bitcoin price (BTC), which ascertains that Bitcoin can not be considered a haven in fear sentiment. Due to the liquidity in economic downside risks, BTC may decrease with high VIX to hedge losses, increasing during low VIX periods. The empirical results conflict with the intertemporal capital asset pricing model, which underlines that the increasing VIX can promote the price of Bitcoin. In turn, BTC positively impacts VIX, which shows that Bitcoin price can be treated as the main indicator for a more comprehensive analysis of the fear index. Under severe global uncertainty and changeable fluctuation of market sentiment, investors can optimize investment decisions based on market fear sentiment. The government can also consider VIX to grasp the trend of BTC to participate in cryptocurrency speculation effectively.
First published online 18 January 2022
Keyword : Bitcoin price, volatility index, causal relationship, time-varying
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Al-Yahyaee, K. H., Mensi, W., Al-Jarrah, I. M. W., Hamdi, A., & Kang, S. H. (2019). Volatility forecasting, downside risk, and diversification benefits of Bitcoin and oil and international commodity markets: A comparative analysis with yellow metal. The North American Journal of Economics and Finance, 49, 104–120. https://doi.org/10.1016/j.najef.2019.04.001
Ali, M., Alam, N., & Rizvi, S. A. R. (2020). Coronavirus (COVID-19) – An epidemic or pandemic for financial markets. Journal of Behavioral and Experimental Finance, 27, 100341. https://doi.org/10.1016/j.jbef.2020.100341
Andrews, D. W. K. (1993). Tests for parameter instability and structural change with unknown change point. Econometrica: Journal of the Econometric Society, 61(4), 821−856. https://doi.org/10.2307/2951764
Andrews, D. W. K., & Ploberger, W. (1994). Optimal tests when a nuisance parameter is present only under the alternative. Econometrica: Journal of the Econometric Society, 62(6), 1383–1414. https://doi.org/10.2307/2951753
Atsalakis, G. S., Atsalaki, I. G., Pasiouras, F., & Zopounidis, C. (2019). Bitcoin price forecasting with neuro-fuzzy techniques. European Journal of Operational Research, 276(2), 770–780. https://doi.org/10.1016/j.ejor.2019.01.040
Baek, C., & Elbeck, M. (2015). Bitcoins as an investment or speculative vehicle? A first look. Applied Economics Letters, 22(1), 30–34. https://doi.org/10.1080/13504851.2014.916379
Balcilar, M., Ozdemir, Z. A., & Arslanturk, Y. (2010). Economic growth and energy consumption causal nexus viewed through a bootstrap rolling window. Energy Economics, 32(6), 1398–1410.
Balcilar, M., & Ozdemir, Z. A. (2013). The export-output growth nexus in Japan: A bootstrap rolling window approach. Empirical Economics, 44, 639–660. https://doi.org/10.1007/s00181-012-0562-8
Balcilar, M., Bouri, E., Gupta, R., & Roubaud, D. (2017). Can volume predict Bitcoin returns and volatility? A quantiles-based approach. Economic Modelling, 64, 74–81. https://doi.org/10.1016/j.econmod.2017.03.019
Baur, D. G., Hong, K., & Lee, A. D. (2018). Bitcoin: medium of exchange or speculative assets. Journal of International Financial Market, Institutions and Money, 54, 177–189. https://doi.org/10.1016/j.intfin.2017.12.004
Baur, D. G., & Lucey, B. M. (2010). Is gold a hedge or a safe haven? An analysis of stocks, bonds and gold. Financial Review, 45, 217–229. https://doi.org/10.1111/j.1540-6288.2010.00244.x
Black, F. (1986). Noise. The Journal of Finance, 41, 529–543. https://doi.org/10.1111/j.1540-6261.1986.tb04513.x
Bollen , J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of Computational Science, 2(1), 1–8. https://doi.org/10.1016/j.jocs.2010.12.007
Bouoiyour, J., Selmi, R., & Wohar, M. E. (2019). Safe havens in the face of presidential election uncertainty: A comparison between Bitcoin, oil and precious metals. Applied Economics, 51(57), 6076–6088. https://doi.org/10.1080/00036846.2019.1645289
Bouri, E., Gkillas, K., & Gupta, R. (2019). Trade uncertainties and the hedging abilities of Bitcoin. Economic Notes, 49(3), e12173. https://doi.org/10.1111/ecno.12173
Bouri, E., & Gupta, R. (2021). Predicting Bitcoin returns: Comparing the roles of newspaper- and internet search-based measures of uncertainty. Finance Research Letters, 38, 101398. https://doi.org/10.1016/j.frl.2019.101398
Bouri, E., Gupta, R., Lahiani, A., & Shahbaz, M. (2018a). Testing for asymmetric nonlinear short and long-run relationships between bitcoin, aggregate commodity and gold prices. Resources Policy, 57, 224–235. https://doi.org/10.1016/j.resourpol.2018.03.008
Bouri, E., Gupta, R., Lau, C. K. M., Roubaud, D., & Wang, S. (2018b). Bitcoin and global financial stress: a copula-based approach to dependence and causality in quantiles. The Quarterly Review of Economics and Finance, 69, 297–307. https://doi.org/10.1016/j.qref.2018.04.003
Bouri, E., Molnár, P., Azzi, G., Roubaud, D., & Hagfors, L. I. (2017a). On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier. Finance Research Letters, 20, 192–198. https://doi.org/10.1016/j.frl.2016.09.025
Bouri, E., Azzi, G., & Dyhrberg, A. H. (2017b). On the return-volatility relationship in the Bitcoin market around the price crash of 2013. Economics, 11(2), 1–17. https://doi.org/10.5018/economics-ejournal.ja.2017-2
Bouri, E., Jalkh, N., Molnár, P., & Roubaud, D. (2017c). Bitcoin for energy commodities before and after the December 2013 crash: Diversififier, hedge or safe haven? Applied Economics, 49(50), 5063–5073. https://doi.org/10.1080/00036846.2017.1299102
Bouri, E., Gupta, R., Tiwari, A. K., & Roubaud, D. (2017d). Does Bitcoin hedge global uncertainty? Evidence from wavelet-based quantile-in-quantile regressions. Finance Research Letters, 23, 87–95. https://doi.org/10.1016/j.frl.2017.02.009
Bradbury, D. (2015). In blocks we trust [Bitcoin security]. Engineering & Technology, 10(2), 68–71. https://doi.org/10.1049/et.2015.0208
Brière, M., Oosterlinck, K., & Szafarz, A. (2015). Virtual currency, tangible return: portfolio diversification with bitcoin. Journal of Asset Management, 16, 365–373. https://doi.org/10.1057/jam.2015.5
Bukovina, J., & Martiček, M. (2016). Sentiment and Bitcoin volatility (MENDELU Working Papers in Business and Economics No. 58/2016). Mendel University in Brno, Faculty of Business and Economics http://ftp.mendelu.cz/RePEc/men/wpaper/58_2016.pdf
Celeste, V., Corbet, S., & Gurdgiev, C. (2018, August). Fractal dynamics and wavelet analysis: Deep volatility properties of Bitcoin, ethereum and ripple (Working Paper). https://doi.org/10.2139/ssrn.3232913
Chan, W. H., Le, M., & Wu, Y. W. (2019). Holding bitcoin longer: The dynamic hedging abilities of Bitcoin. The Quarterly Review of Economics and Finance, 71, 107–113. https://doi.org/10.1016/j.qref.2018.07.004
Cheah, E. T., & Fry, J. (2015). Speculative bubbles in bitcoin markets? An empirical investigation into the fundamental value of bitcoin. Economics Letters, 130, 32–36. https://doi.org/10.1016/j.econlet.2015.02.029
Chen, C., Liu, L., & Zhao, N. (2020). Fear sentiment, uncertainty, and Bitcoin price dynamics: The case of COVID-19. Emerging Markets Finance and Trade, 56(10), 2298–2309. https://doi.org/10.1080/1540496X.2020.1787150
Ciaian, P., Rajcaniova, M., & Kancs, D. (2016). The economics of Bitcoin price formation. Applied Economics, 48(19), 1799–1815. https://doi.org/10.1080/00036846.2015.1109038
Ciner, C., Gurdgiev, C., & Lucey, B. M. (2013). Hedges and safe haves: An examination of stocks, bonds, gold, oil and exchange rates. International Review of Financial Analysis, 29, 202–211. https://doi.org/10.1016/j.irfa.2012.12.001
Conlon, T., & McGee, R. (2020). Safe haven or risky hazard? Bitcoin during the Covid-19 bear market. Finance Research Letters, 35, 101607. https://doi.org/10.1016/j.frl.2020.101607
Das, D., & Dutta, A. (2020). Bitcoin’s energy consumption: Is it the Achilles Heel to miner’s revenue. Economics Letters, 186, 108530. https://doi.org/10.1016/j.econlet.2019.108530
Dastgir, S., Demir, E., Downing, G., Gozgor, G., & Lau, C. K. M. (2019). The causal relationship between Bitcoin attention and Bitcoin returns: Evidence from the copula-based Granger causality test. Finance Research Letters, 28, 160–164. https://doi.org/10.1016/j.frl.2018.04.019
Da, Z., Engelberg, J., & Gao, P. (2015). The sum of all fears investor sentiment and asset prices. The Review of Financial Studies, 28(1), 1–32. https://doi.org/10.1093/rfs/hhu072
Demir, E., Gozgor, G., Lau, C. K. M., & Vigne, S. A. (2018). Does economic policy uncertainty predict the Bitcoin returns? An empirical investigation. Finance Research Letters, 26, 145–149. https://doi.org/10.1016/j.frl.2018.01.005
Dyhrberg, A. H. (2016a). Bitcoin, gold and the dollar – A GARCH volatility analysis. Finance Research Letters, 16, 85–92. https://doi.org/10.1016/j.frl.2015.10.008
Dyhrberg, A. H. (2016b). Hedging capabilities of bitcoin. Is it the virtual gold. Finance Research Letters, 16, 139–144. https://doi.org/10.1016/j.frl.2015.10.025
El Alaoui, M., Bouri, E., & Roubaud, D. (2019). Bitcoin price-volume: A multifractal cross-correlation approach. Finance Research Letters, 31. https://doi.org/10.1016/j.frl.2018.12.011
Georgoula, I., Pournarakis, D., Bilanakos, C., Sotiropoulos, D., & Giaglis, G. M. (2015). Using time-series and sentiment analysis to detect the determinants of Bitcoin prices. https://doi.org/10.2139/ssrn.2607167
Glaser, F., Haferkorn, M., Weber, M. C., & Zimmermann, K. (2014). How to price a digital currency? Empirical insights on the influence of media coverage on the Bitcoin bubble. MKWI 2014 (Paderborn) & Banking and Information Technology, 15(1). https://ssrn.com/abstract=2430653
Guesmi, K., Saadi, S., Abid, I., & Ftiti, Z. (2019). Portfolio diversification with virtual currency: Evidence from bitcoin. International Review of Financial Analysis, 63, 431–437. https://doi.org/10.1016/j.irfa.2018.03.004
Guo, K., Sun, Y., & Qian, X. (2017). Can investor sentiment be used to predict the stock price? Dynamic analysis based on China stock market. Physica A: Statistical Mechanics and its Applications, 469, 390–396. https://doi.org/10.1016/j.physa.2016.11.114
Hansen, B. E. (1992). Tests for parameter instability in regressions with I(1) processes. Journal of Business & Economic Statistics, 20(1), 45–59. https://doi.org/10.1198/073500102753410381
Harvey, C. R. (2014). Bitcoin myths and facts. National Bureau of Economic Research. https://doi.org/10.2139/ssrn.2479670
Huhtinen, T.-P. (2014). Bitcoin as a monetary system: Examining attention and attendance [Master’s thesis]. Aalto University School of Business. https://core.ac.uk/download/pdf/80712618.pdf
Jareño, F., González, M. O., Tolentino, M., & Sierra, K. (2020). Bitcoin and gold price returns: A quantile regression and NARDL analysis. Resources Policy, 67, 101666. https://doi.org/10.1016/j.resourpol.2020.101666
Jiang, Y., Ren, Y. S., Ma, C. Q., Liu, J. L., & Sharp, B. (2020). Does the price of strategic commodities respond to U.S. partisan conflict? Resources Policy, 66, 101617. https://doi.org/10.1016/j.resourpol.2020.101617
Jubinski, D., & Lipton, A. F. (2012). Equity volatility, bond yields, and yield spreads. Journal of Futures Market, 32(5), 480–503. https://doi.org/10.1002/fut.20521
Karalevicius, V., Degrande, N., & De Weerdt, J. (2018). Using sentiment analysis to predict interday Bitcoin price movements. Journal Risk Finance, 19(1), 56–75. https://doi.org/10.1108/JRF-06-2017-0092
Keynes, J. M. (1936). The general theory of employment, interest and money. Palgrave MacMillan.
Kharpal, A. (2017). Central banks could hold bitcoin and ether for the first time in 2018, cryptocurrency CEO says. https://www.cnbc.com/2017/12/18/central-banks-will-hold-bitcoin-and-ether-in-2018-blockchain-ceo.html
Kindleberger, C. P. (1978). Manias, panics and crashes: A history of financial crises. Palgrave Macmillan.
Kjærland, F., Khazal, A., Krogstad, E. A., Nordstrøm, F. B. G., & Oust, A. (2018). An analysis of Bitcoin’s price dynamics. Journal of Risk and Financial Management, 11(4), 1–18. https://doi.org/10.3390/jrfm11040063
Kristoufek, L. (2013). Fractal markets hypothesis and the global financial crisis: Wavelet power evidence. Scientific Reports, 3, 2857. https://doi.org/10.1038/srep02857
Kristoufek, L. (2015). What are the main drivers of the bitcoin price? Evidence from wavelet coherence analysis? Plos One, 10(4), 1–14. https://doi.org/10.1371/journal.pone.0123923
López-Cabarcos, M. Á., Pérez-Pico, A. M., Piñeiro-Chousa, J., & Šević, A. (2021). Bitcoin volatility, stock market and investor sentiment. Are they connected. Finance Research Letters, 38, 101399. https://doi.org/10.1016/j.frl.2019.101399
Lucas, R. E. (1976). Econometric policy evaluation: A critique. Carnegie-Rochester Conferences Series on Public Policy, 1, 19–46. https://doi.org/10.1016/S0167-2231(76)80003-6
Matkovskyy, R., & Jalan, A. (2019). From financial markets to Bitcoin markets: A fresh look at the contagion effect. Finance Research Letters, 31, 93–97. https://doi.org/10.1016/j.frl.2019.04.007
Mauro, C., Kumar, E. S., Chhagan, L., & Sushmita, R. (2018). A survey on security and privacy issues of Bitcoin. IEEE Communications Surveys & Tutorials, 20(4), 3416–3452. https://doi.org/10.1109/COMST.2018.2842460
Mele, A., Obayashi, Y., & Shalen, C. (2015). Rate fears gauges and the dynamics of fixed income and equity volatilities. Journal of Banking & Finance, 52, 256–265. https://doi.org/10.1016/j.jbankfin.2014.04.030
Merton, R. C. (1973). An intertemporal capital asset pricing model. Econometrica, 41(5), 867–887. https://doi.org/10.2307/1913811
Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. https://ssrn.com/abstract=3440802
Nofsinger, J. (2005). Social mood and financial economics. The Journal of Behavioral Finance, 6(3), 144–160. https://doi.org/10.1207/s15427579jpfm0603_4
Nyblom, J. (1989). Testing for the constancy of parameters over time. Journal of the American Statistical Association, 84(405), 223–230. https://doi.org/10.1080/01621459.1989.10478759
Panagiotidis, T., Stengos, T., & Vravosinos, O. (2019). The effects of markets, uncertainty and search intensity on Bitcoin returns. International Review of Financial Analysis, 63, 220–242. https://doi.org/10.1016/j.irfa.2018.11.002
Philippas, D., Rjiba, H., Guesmi, K., & Goutte, S. (2019). Media attention and Bitcoin prices. Finance Research Letters, 30, 37–43. https://doi.org/10.1016/j.frl.2019.03.031
Plakandaras, V., Bouri, E., & Gupta, R. (2021). Forecasting Bitcoin returns: Is there a role for the US–China trade war? Journal of Risk, 23(3), 75–93. https://doi.org/10.21314/JOR.2021.001
Platanakis, E., & Urquhart, A. (2020). Should investors include Bitcoin in their portfolios? A portfolio theory approach. The British Accounting Review, 52(4), 100837. https://doi.org/10.1016/j.bar.2019.100837
Popper, N. (2015). Digital gold: The untold story of Bitcoin. Penguin Books Limited.
Poyser, O. (2019). Exploring the dynamics of Bitcoin’s price: a Bayesian structural time series approach. Eurasian Economic Review, 9(1), 29–60. https://doi.org/10.1007/s40822-018-0108-2
Qin, M., Su, C. W., & Tao, R. (2021). BitCoin: A new basket for eggs? Economic Modelling, 94, 896–907. https://doi.org/10.1016/j.econmod.2020.02.031
Shahzad, J., Bouri, E., Roubaud, D., Kristoufek, L., & Lucey, B. (2019). Is Bitcoin a better safe-haven investment than gold and commodities. International Review of Financial Analysis, 63, 322–330. https://doi.org/10.1016/j.irfa.2019.01.002
Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. Journal of Finance, 19(3), 425–442. https://doi.org/10.1111/j.1540-6261.1964.tb02865.x
Shevchenko, D., & Godwin, E. I. (2018). The effects of behavioral factors on the creditworthiness of small-scale enterprises. In I. Nekrasova, O. Karnaukhova, & B. Christiansen (Eds.), Fractal approaches for modeling financial assets and predicting crises. IGI Global. https://doi.org/10.4018/978-1-5225-3767-0.ch006
Shukur, G., & Mantalos, P. (1997). Size and power of the RESET test as applied to systems of equations: A bootstrap approach (Working Paper). Department of Statistics, University of Lund.
Shukur, G., & Mantalos, P. (2000). A simple investigation of the Granger-Causality test in integrated-cointegrated VAR systems. Journal of Applied Statistics, 27, 1021–1031. https://doi.org/10.1080/02664760050173346
Smales, L. A. (2014). News sentiment and the investor fear gauge. Finance Research Letters, 2(11), 122–130. https://doi.org/10.1016/j.frl.2013.07.003
Smales, L. A. (2019). Bitcoin as a safe haven: Is it even worth considering. Finance Research Letters, 30, 385–393. https://doi.org/10.1016/j.frl.2018.11.002
Stavroyiannis, S., & Babalos, V. (2017). Dynamic properties of the Bitcoin and the US market. SSRN. https://doi.org/10.2139/ssrn.2966998
Su, C. W., Cai, X. Y., Qin, M., Tao R., & Umar, M. (2021a). Can bank credit withstand falling house price in China. International Review of Economics & Finance, 71, 257–267. https://doi.org/10.1016/j.iref.2020.09.013
Su, C. W., Khan, K., Tao R., & Moldovan, N. C. (2019a). Does geopolitical risk strengthen or depress oil prices and financial liquidity? Evidence from Saudi Arabia. Energy, 187, 116003. https://doi.org/10.1016/j.energy.2019.116003
Su, C. W., Qin, M., Rizvi, S. K. A., & Umar, M. (2020a). Bank competition in China: A blessing or a curse for financial system. Economic Research-Ekonomska Istraživanja, 34(1), 1244–1264. https://doi.org/10.1080/1331677X.2020.1820361
Su, C. W., Qin, M., Tao, R., & Umar, M. (2020b). Does oil price really matter for the wage arrears in Russia? Energy, 208, 118350. https://doi.org/10.1016/j.energy.2020.118350
Su, C. W., Qin, M., Tao, R., & Umar, M. (2020c). Financial implications of fourth industrial revolution: Can bitcoin improve prospects of energy investment? Technological Forecasting and Social Change, 158, 120178. https://doi.org/10.1016/j.techfore.2020.120178
Su, C. W., Qin, M., Tao, R., Nicoleta-Claudia, M., & Oana-Ramona, L. (2020d). Factors driving oil price – From the perspective of united states. Energy, 197, 117219. https://doi.org/10.1016/j.energy.2020.117219
Su, C. W., Qin, M., Tao, R., Shao, X. F., & Lucian, L. A. (2019b). Can Bitcoin hedge the risks of geopolitical events. Technological Forecasting and Social Change, 159, 120182. https://doi.org/10.1016/j.techfore.2020.120182
Su, C. W., Qin, M., Zhang, X. L., Tao, R., & Umar, M. (2021b). Should Bitcoin be held under the U.S. partisan conflict? Technological and Economic Development Economy, 27(3), 511–529. https://doi.org/10.3846/tede.2021.14058
Su, C. W., Song, Y., Tao, R., & Hao, L. N. (2020e). Does political conflict affect bilateral trade or vice versa? Evidence from Sino-U.S. relations. Economic Research-Ekonomska Istraživanja, 33(1), 3238–3257. https://doi.org/10.1080/1331677X.2019.1694559
Su, C. W., Sun, T. Z., Ahmad, S., & Mirza, N. (2021c). Does institutional quality and remittances inflow crowd-in private investment to avoid Dutch Disease? A case for emerging seven (E7) economies. Resources Policy, 72, 102111. https://doi.org/10.1016/j.resourpol.2021.102111
Su, C.-W., Huang, S.-W., Qin, M., & Umar, M. (2021d). Does crude oil price stimulate economic policy uncertainty in BRICS? Pacific Basin Finance Journal, 66, 101519. https://doi.org/10.1016/j.pacfin.2021.101519
Tao, R., Su, C. W., Xiao, Y. D., Dai, K., & Khalid, F. (2021). Robo advisors, algorithmic trading and investment management: Wonders of fourth industrial revolution in financial markets. Technological Forecasting and Social Change, 163, 120421. https://doi.org/10.1016/j.techfore.2020.120421
Troster, V., Tiwari, A. K., Shahbaz, M., & Macedo, D. N. (2019). Bitcoin returns and risk: A general GARCH and GAS analysis. Finance Research Letters, 30, 187–193.
Wang, G. J., Tang, Y. P., Xie, C., & Chen, S. (2019). Is Bitcoin a safe haven or a hedging asset? Evidence from China. Journal of Management Science and Engineering, 4(3), 173–188. https://doi.org/10.1016/j.jmse.2019.09.001
Whaley, R. E. (2000). The investor fear gauge: Explication of the CBOE VIX. Journal of Portfolio Management, 26(3), 12–17. https://doi.org/10.3905/jpm.2000.319728
Weber, B. (2014). Bitcoin and the legitimacy crisis of money. Cambridge Journal of Economics, 40, 17–41. https://doi.org/10.1093/cje/beu067
Yermack, D. (2013). Is Bitcoin a real currency? An economic appraisal (NBER Working Paper No. 19747). National Bureau of Economic Research. https://doi.org/10.3386/w19747
Zaghloul, E., Li, T., Mutka, M., & Ren, J. (2019). Bitcoin and blockchain: Security and privacy. arXiv:1904.11435.
Zhu, Y., Dickinson, D., & Li, J. (2017). Analysis on the influence factors of Bitcoin’s price based on VEC model. Financial Innovation, 3, 3. https://doi.org/10.1186/s40854-017-0054-0
Zouaoui, M., Nouyrigat, G., & Beer, F. (2011). How does investor sentiment affect stock market crises? Evidence from panel data. Financial Review, 46(4), 723–747. https://doi.org/10.1111/j.1540-6288.2011.00318.x