A proposition of an emerging technologies expectations model: an example of student attitudes towards blockchain
Abstract
The paper proposes an Emerging Technologies Expectations Model (ETEM) that aims at explaining the differences in perception of new technologies as well as the expectations towards them. These Expectations, classified into Technology Evolution, Technology Revolution, Social Evolution and Social Revolution are explained by Knowledge and Usage that in turn are shaped by Information Sources. The Information Sources factor, which influences both Expectations and Knowledge, and the Usage factor both play an important role in the model. The application of this model was illustrated using blockchain as an example of an emerging technology, and data from a survey conducted among IT university students in Cracow, Poland. The proposed model contributes to filling the research gap concerning a comprehensive explanation of people’s expectations towards emerging technologies, considering the way people absorb knowledge and undertake the usage of technology based on various information sources. It also provides practical implications, since the knowledge of the factors that can influence people’s expectations towards emerging technologies might be useful in shaping these expectations.
First published online 15 November 2021
Keyword : technology adoption model, emerging technology, blockchain, young people’s expectations, students’ sources of knowledge
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behavior. Prentice-Hall, Englewood Cliffs, NJ. https://www.worldcat.org/title/understanding-attitudes-and-predicting-social-behavior/oclc/5726878
Althuizen, N. (2018). Using structural technology acceptance models to segment intended users of a new technology: Propositions and an empirical illustration. Information Systems Journal, 28(5), 879–904.
Auger, P. (2017). Information sources in grey literature. Walter de Gruyter GmbH & co KG. https://doi.org/10.1515/9783110977233
Baker, J. (2012). The technology-organization-environment framework. In Y. Dwivedi, M. Wade, & S. Schneberger (Eds.), Information systems theory: Explaining and predicting our digital society (1st ed., pp. 231–245). Springer. https://www.springer.com/gp/book/9781441961075
Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Prentice-Hall. Englewood Cliffs, NJ.
Bhattacharyya, S. S., & Nair, S. (2019). Explicating the future of work: Perspectives from India. Journal of Management Development, 38(3), 175–194. https://doi.org/10.1108/JMD-01-2019-0032
Bore, N., Karumba, S., Mutahi, J., Darnell, S. S., Wayua, C., & Weldemariam, K. (2017). Towards blockchain-enabled school information Hub. In ICTD ’17, ACM International Conference Proceeding Series, Part F1320. https://doi.org/10.1145/3136560.3136584
Borrás, S., & Edler, J. (2020). The roles of the state in the governance of socio-technical systems’ transformation. Research Policy, 49(5), 103971. https://doi.org/10.1016/j.respol.2020.103971
Buterin, V. (2014). A next-generation smart contract and decentralized application platform. Ethereum White Paper. Retrieved December 4, 2020, from https://blockchainlab.com/pdf/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
Cagnin, C., Keenan, M., Johnston, R., Scapolo, F., & Barré, R. (2008). Future-oriented technology analysis. Strategic intelligence for an innovative economy. Springer-Verlag. https://doi.org/10.1007/978-3-540-68811-2
Chen, L., Xu, L., Shah, N., Gao, Z., Lu, Y., & Shi, W. (2017). On security analysis of proof-of- elapsed-time (PoET). In P. Spirakis & P. Tsigas (Eds.), Lecture notes in computer science: Vol. 10616. Stabilization, safety, and security of distributed systems (pp. 282–297). Springer, Cham. https://doi.org/10.1007/978-3-319-69084-1_19
Churchill Jr, G. A., & Surprenant, C. (1982). An investigation into the determinants of customer satisfaction. Journal of Marketing Research, 19(4), 491–504. https://doi.org/10.1177/002224378201900410
Cohen, W., & Levinthal, D. (1990). Absorptive capacity: A new perspective on learning and innovation. Administrative Science Quarterly, 35(1), 128–152. https://doi.org/10.2307/2393553
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Mana-gement Science, 35(8), 982–1003. https://doi.org/10.1287/mnsc.35.8.982
Dhagarra, D., Goswami, M., Sarma, P. R. S., & Choudhury, A. (2019). Big data and blockchain supported conceptual model for enhanced healthcare coverage. Business Process Management Journal, 25(7), 1612–1632. https://doi.org/10.1108/BPMJ-06-2018-0164
Dymek, D., Grabowski, M., & Paliwoda-Pękosz, G. (2020). Students expectations towards new technologies: A case of blockchain. In AMCIS 2020 Proceedings, 1. https://aisel.aisnet.org/amcis2020/global_dev/global_dev/1
Eccles, J. S., & Wigfield, A. (2020). From expectancy-value theory to situated expectancy-value theory: A developmental, social cognitive, and sociocultural perspective on motivation. Contemporary Educational Psychology, 61, 101859. https://doi.org/10.1016/j.cedpsych.2020.101859
Frizzo-Barker, J., Chow-White, P. A., Adams, P. R., Mentanko, J., Ha, D., & Green, S. (2020). Blockchain as a disruptive technology for busi-ness: A systematic review. International Journal of Information Management, 51, 102029. https://doi.org/10.1016/j.ijinfomgt.2019.10.014
Ghatpande, S., Ouattara, H., Ahmat, D., Sawadogo, Z., & Bissyand, T. F. (2019). Secure, transparent and uniform mobile money for Inter-net-underserved areas using sporadically-synchronized blockchain. In G. Mendy, S. Ouya, I. Dioum, & O. Thiaré (Eds.), Lecture notes of the institute for computer sciences, social informatics and telecommunications engineering: Vol. 275. e-infrastructure and e-services for developing countries (pp. 120–130). Springer. https://doi.org/10.1007/978-3-030-16042-5_12
Halicka, K. (2016). Innovative classification of methods of the Future-oriented Technology Analysis. Technological and Economic Development of Economy, 22(4), 574–597. https://doi.org/10.3846/20294913.2016.1197164
Han, T.-I., & Stoel, L. (2017). Explaining socially responsible consumer behavior: A meta-analytic review of theory of planned behavior. Journal of International Consumer Marketing, 29(2), 91–103. https://doi.org/10.1080/08961530.2016.1251870
Hostettler, S. (2018). From innovation to social impact. In S. Hostettler, S. Najih Besson, & J. C. Bolay (Eds.), Technologies for development. UNESCO 2016 (pp. 3–9). Springer, Cham. https://doi.org/10.1007/978-3-319-91068-0_1
Howcroft, D. (2001). After the Goldrush: Deconstructing the myths of the dot.com market. Journal of Information Technology, 16(4), 195–204. https://doi.org/10.1080/02683960110100418
Iansiti, M., & Lakhani, K. (2017). The truth about blockchain. Harvard Business Review, 95(1), 118–127. https://www.hbs.edu/faculty/Pages/item.aspx?num=52100
IT Governance Institute. (2007). COBIT 4.1. IT Governance Institute. Rolling Meadows. https://www.worldcat.org/title/cobit-41/oclc/807062082
Jakobsson, M., & Juels, A. (1999). Proofs of work and bread pudding protocols (extended abstract). In B. Preneel (Ed.), IFIP – The International Federation for Information Processing: Vol. 23. Secure information networks (pp. 258–272). Springer. https://doi.org/10.1007/978-0-387-35568-9_18
Khan, S. N., Shael, M., & Majdalawieh, M. (2019). Blockchain technology as a support infrastructure in E- Government evolution at Dubai Eco-nomic Department. In Proceedings of the 2019 International Electronics Communication Conference (pp. 124–130). https://doi.org/10.1145/3343147.3343164
Kinai, A., Markus, I., Oduor, E., & Diriye, A. (2017). Asset-based lending via a secure distributed platform. In ICTD ’17, ACM International Conference Proceeding Series, Part F1320 (pp. 17–20). Association for Computing Machinery. https://doi.org/10.1145/3136560.3136594
King, S., & Nadal, S. (2012). PPcoin: Peer-to-peer crypto-currency with proof-of-stake. https://www.chainwhy.top/upload/default/20180619/126a057fef926dc286accb372da46955.pdf
Lai, P. C. (2017). The literature review of technology adoption models and theories for the novelty technology. JISTEM-Journal of Information Systems and Technology Management, 14(1), 21–38. https://www.scielo.br/j/jistm/a/D3NXPz5WF4gQX9cSdLKQv6D/?lang=en&format=pdf
Lee, J. Y., Paik, W., & Joo, S. (2012). Information resource selection of undergraduate students in academic search tasks. Information Research: An International Electronic Journal, 17(1), 511. http://informationr.net/ir/17-1/paper511.html
Lemieux, V. L. (2016). Trusting records: Is blockchain technology the answer? Records Management Journal, 26(2), 110–139. https://doi.org/10.1108/RMJ-12-2015-0042
Lin, C. H., Shih, H. Y., & Sher, P. J. (2007). Integrating technology readiness into technology acceptance: The TRAM model. Psychology & Mar-keting, 24(7), 641–657. https://doi.org/10.1002/mar.20177
Lowry, P. B., Gaskin, J., & Moody, G. D. (2015). Proposing the multi-motive information systems continuance model (MISC) to better explain end-user system evaluations and continuance intentions. Journal of the Association for Information Systems, 16(7), 515–579. https://doi.org/10.17705/1jais.00403
MacKenzie, D., & Wajcman, J. (Eds.) (1999). The social shaping of technology (2nd ed.). Open University Press. https://www.worldcat.org/title/social-shaping-of-technology/oclc/39713267
Magruk, A. (2011). Innovative classification of technology foresight methods. Technological and Economic Development of Economy, 17(4), 700–715. https://doi.org/10.3846/20294913.2011.649912
Mandel, M. J. (2000, February 14). The risk that boom will turn to bust. Business Week, 3668, 120–122.
Mazambani, L., & Mutambara, E. (2019). Predicting FinTech innovation adoption in South Africa: The case of cryptocurrency. African Journal of Economic and Management Studies, 11(1), 30–50. https://doi.org/10.1108/AJEMS-04-2019-0152
Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/en/bitcoin-paper
OECD, & SOEC. (1997). Proposed guidelines for collecting and interpreting technological innovation data: Oslo manual. Organisation for Eco-nomic Co-operation and Development & Statistical Office of the European Communities. https://doi.org/10.1787/9789264192263-en
Oliver, R. L. (1980). A cognitive model of the antecedents and consequences of satisfaction decisions. Journal of Marketing Research, 17(4), 460–469. https://doi.org/10.1177/002224378001700405
Paliwoda-Pękosz, G., Dymek, D., & Grabowski, M. (2021). Adoption of emerging information technologies through the lenses of knowledge acquisition. In AMCIS 2021 Proceedings. https://aisel.aisnet.org/amcis2021/adopt_diffusion/adopt_diffusion/6/
Parasuraman, A. (2000). Technology Readiness Index (TRI) a multiple-item scale to measure readiness to embrace new technologies. Journal of Service Research, 2(4), 307–320. https://doi.org/10.1177/109467050024001
Parasuraman, A., & Colby, C. L. (2015). An updated and streamlined technology readiness index: TRI 2.0. Journal of Service Research, 18(1), 59–74. https://doi.org/10.1177/1094670514539730
Pinch, T. J., & Bijker, W. E. (1984). The social construction of facts and artefacts: Or how the sociology of science and the sociology of technology might benefit each other. Social Studies of Science, 14(3), 399–441. https://doi.org/10.1177/030631284014003004
Ratchford, M., & Barnhart, M. (2012). Development and validation of the technology adoption propensity (TAP) index. Journal of Business Re-search, 65(8), 1209–1215. https://doi.org/10.1016/j.jbusres.2011.07.001
Rayburn, J. D., & Palmgreen, P. (1984). Merging uses and gratifications and expectancy-value theory. Communication Research, 11, 537–562. https://doi.org/10.1177/009365084011004005
Rogers, E. M. (2003). Diffusion of innovations (5th ed.). Free Press.
Rotolo, D., Hicks, D., & Martin, B. R. (2015). What is an emerging technology? Research Policy, 44(10), 1827–1843. https://doi.org/10.1016/j.respol.2015.06.006
Sawyer, S., & Jarrahi, M. H. (2014). Sociotechnical approaches to the study of Information Systems. In H. Topi & A. Tucker (Eds.), Computing handbook: Information systems and information technology (3rd ed., pp. 5-1–5-27). CRC Press. https://doi.org/10.1201/b16768
Schuetz, S., & Venkatesh, V. (2020). Blockchain, adoption, and financial inclusion in India: Research opportunities. International Journal of In-formation Management, 52, 101936. https://doi.org/10.1016/j.ijinfomgt.2019.04.009
Schumpeter, J., & Backhaus, U. (2003). The theory of economic development. In J. Backhaus (Ed.), The European Heritage in Economics and the Social Sciences: Vol. 1. Joseph Alois Schumpeter: Entrepreneurship, style and vision (pp. 61–116). Kluwer Academic Publishers. https://doi.org/10.1007/0-306-48082-4_3
Shin, D. (2019). Blockchain: The emerging technology of digital trust. Telematics and Informatics, 45, 101278. https://doi.org/10.1016/j.tele.2019.101278
Shin, D., & Ibarhine, M. (2020). The socio-technical assemblages of blockchain system: How blockchains are framed and how the framing reflects societal contexts. Digital Policy, Regulation and Governance, 22(3), 245–263. https://doi.org/10.1108/DPRG-11-2019-0095
Shin, D., & Park, Y. J. (2019). Role of fairness, accountability, and transparency in algorithmic affordance. Computers in Human Behavior, 98, 277–284. https://doi.org/10.1016/j.chb.2019.04.019
Silva, F. M., Araujo, E. A., & Moraes, M. B. (2016). Innovation development process in small and medium technology-based companies. RAI Revista de Administração e Inovação, 13, 176–189. https://doi.org/10.1016/j.rai.2016.04.005
Szabo, N. (1997). The idea of smart contracts. Nick Szabo’s Papers and Concise Tutorials. https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/idea.html
Taherdoost, H. (2018). A review of technology acceptance and adoption models and theories. Procedia Manufacturing, 22, 960–967. https://doi.org/10.1016/j.promfg.2018.03.137
Tholons. (2018). Tholons Services Globalization Index 2018. https://cdn.newswire.com/files/x/24/52/643156aaf14dcb4d5c8cb43d848f.pdf
Tornatzky, L. G., Fleischer, M., & Chakrabarti, A. K. (Eds.). (1990). Processes of technological innovation. Lexington Books.
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478. https://doi.org/10.2307/30036540
Westhuizen, B. van der. (2016). Corporate actions and the need for market efficiency. Journal of Securities Operations & Custody, 8(4), 306–310. https://hstalks.com/article/4465/corporate-actions-and-the-need-for-market-efficien/
Wigfield, A., & Eccles, J. S. (2000). Expectancy–value theory of achievement motivation. Contemporary Educational Psychology, 25(1), 68–81. https://doi.org/10.1006/ceps.1999.1015
Xu, X., Weber, I., & Staples, M. (2019). Architecture for blockchain applications. Springer, Cham. https://doi.org/10.1007/978-3-030-03035-3