Economic, environmental, and social dimensions of farming sustainability – trade-off or synergy?
Abstract
Prior studies on the relationships between economic, environmental, and social dimensions of activity on agricultural holdings has yielded inconclusive results. This study examines the interactions between these spheres, with the aim of determining what the relationships between them might be. The study was based on the results of surveys of 120 farms in the Wielkopolska region of Poland, using structural equation modeling. The results showed significant and positive relationships between the economic, social, and environmental dimensions that could create synergies between them. The strongest positive relationships existed between the economic and environmental dimensions. Thus, economic and environmental development can be stimulated simultaneously. Analyzed farms from the Wielkopolska region positively discount the existing support system in the EU to the complementarity between environmental and economic governance. Our research indicates the need for the EU to implement a strategy adjusted to the individual region’s peculiarities in terms of environmental and social policies in rural areas.
First published online 04 March 2022
Keyword : sustainability, economic, environmental, social dimensions, agricultural holdings, trade-off, structural equation modelling
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Beltrán-Esteve, M., & Picazo-Tadeo, A. J. (2017). Assessing environmental performance in the European Union: Eco-innovation versus catch-ing-up. Energy Policy, 104, 240–252. https://doi.org/10.1016/j.enpol.2017.01.054
Beltrán-Esteve, M., Giménez, V., & Picazo-Tadeo, A. J. (2019). Environmental productivity in the European Union: A global Luen-berger-metafrontier approach. Science of Total Environment, 692, 136–146. https://doi.org/10.1016/j.scitotenv.2019.07.182
Bolwig, S., Gibbon, P., & Jones, S. (2009). The economics of smallholder organic contract farming in Tropical Africa. World Development, 37(6), 1094–1104. https://doi.org/10.1016/j.worlddev.2008.09.012
Bonfiglio, A., Arzeni, A., & Bodini, A. (2017). Assessing eco-efficiency of arable farms in rural areas. Agricultural Systems, 151, 114–125. https://doi.org/10.1016/j.agsy.2016.11.008
Briner, S., Huber, R., Bebi, P., Elkin, C., Schmatz, D. R., & Grêt-Regamey, A. (2013). Trade-Offs between ecosystem services in a mountain region. Ecology and Society, 18(3), 35. https://doi.org/10.5751/ES-05576-180335
Brown, T. A. (2015). Confirmatory factor analysis for applied research. The Guilford Press.
Brown, T. A., & Moore, M. T. (2012). Confirmatory factor analysis. In R. H. Hoyle (Ed.), Handbook of structural equation modeling (pp. 361–379). The Guilford Press.
Calzadilla, A., Rehdanz, K., & Tol, R. S. (2010). The economic impact of more sustainable water use in agriculture: A computable general equilibrium analysis. Journal of Hydrology, 384(3–4), 292–305. https://doi.org/10.1016/j.jhydrol.2009.12.012
Cristea, M., Noja, G., Marcu, N., Siminica, M., & Tirca, D. (2020). Modelling EU bioeconomy credentials in the economic development framework: The role of intellectual capital. Technological and Economic Development of Economy, 26(6), 1139–1164. https://doi.org/10.3846/tede.2020.13159
Czyżewski, B., & Majchrzak, A. (2018). Market versus agriculture in Poland – macroeconomic relations of incomes, prices and productivity in terms of the sustainable development paradigm. Technological and Economic Development of Economy, 24(2), 318–334. https://doi.org/10.3846/20294913.2016.1212743
Czyżewski, B., Matuszczak, A., Grzelak, A., Guth, M., & Majchrzak, A. (2020). Environmental sustainable value in agriculture revisited: How does Common Agricultural Policy contribute to eco-efficiency? Sustainability Science, 16, 137–152. https://doi.org/10.1007/s11625-020-00834-6
Daccache, A., Ciurana, J. S., Rodriguez Diaz, J. A., & Knox, J. W. (2014). Water and energy footprint of irrigated agriculture in the Mediterranean region. Environmental Research Letters, 9(12), 124014. https://doi.org/10.1088/1748-9326/9/12/124014
Eigenbrod, F., Anderson, B. J., Armsworth, P. R., Heinemeyer, A., Jackson, S. F., Parnell, M., Thomas, C. D., & Gaston, K. J. (2009). Ecosystem service benefits of contrasting conservation strategies in a human-dominated region. Proceedings of the Royal Society B: Biological Sciences, 276(1669), 2903–2911. https://doi.org/10.1098/rspb.2009.0528
Engel, E. (1857). Die Productions- und Consumtionsverhältnisse des Königreichs Sachsens. Zeitschrift des statistischen Bureaus des Königlich Sächsischen Ministerium des Innern, 8–9, 28–29.
Food and Agriculture Organization of the United Nations. (2013). SAFA Sustainability Assessment of Food and Agriculture systems indicators. Retrieved June 21, 2020, from http://www.fao.org/fileadmin/templates/nr/sustainability_pathways/docs/SAFA_Indicators_final_19122013.pdf
Galdeano-Gómez, E., Aznar-Sánchez, J. A., Pérez-Mesa, J. C., & Piedra-Muñoz, L. (2017). Exploring synergies among agricultural sustainability dimensions: An empirical study on farming system in Almería (Southeast Spain). Ecological Economics, 140, 99–109. https://doi.org/10.1016/j.ecolecon.2017.05.001
Gao, L., & Bryan, B. A. (2017). Finding pathways to national-scale land-sector sustainability. Nature, 544, 217–222. https://doi.org/10.1038/nature21694
Garson, G. D. (2015). Structural equation modeling. Statistical Associates “Blue Book” Series. Statistical Associates Publishing.
Gobattoni, F., Pelorosso, R., Leone, A., & Ripa, M. N. (2015). Sustainable rural development: The role of traditional activities in Central Italy. Land Use Policy, 48, 412–427. https://doi.org/10.1016/j.landusepol.2015.06.013
Gómez-Limon, J. A., & Sanchez-Fernandez, G. (2010). Empirical evaluation of agricultural sustainability using composite indicators. Ecological Economics, 69(5), 1062–1075. https://doi.org/10.1016/j.ecolecon.2009.11.027
Grzelak, A. (2016). The problem of complexity in economics on the example of the agricultural sector. Agricultural Economics – Czech, 61(12), 577–586. https://doi.org/10.17221/236/2014-AGRICECON
Hadrich, J. C., & Olson, F. (2011). Joint measurement of farm size and farm performance: A confirmatory factor analysis. Agricultural Finance Review, 71(3), 295–309. https://doi.org/10.1108/00021461111177585
Haileslassie, A., Craufurd, P., Thiagarajah, R., Kumar, S., Whitbread, A., Rathor, A., Blummel, M., Ericsson, P., & Kakumanu, K. R. (2016). Empirical evaluation of sustainability of divergent farms in the dryland farming systems of India. Ecological Indicators, 60, 710–723. https://doi.org/10.1016/j.ecolind.2015.08.014
Hooper, D., Coughlan, J., & Mullen, M. R. (2008). Structural equation modeling: Guidelines for determining model fit. Electronic Journal of Business Research Methods, 6(1), 53–60.
Iacobucci, D. (2010). Structural equations modeling: Fit indices, sample size, and advanced topics. Journal of Consumer Psychology, 20(1), 90–98. https://doi.org/10.1016/j.jcps.2009.09.003
Jaklič, T., Juvančič, L., Kavčič, S., & Debeljak, M. (2014). Complementarity of socio-economic and emergy evaluation of agricultural production systems: The case of Slovenian dairy sector. Ecological Economics, 107, 469–481. https://doi.org/10.1016/j.ecolecon.2014.09.024
Jan, P., Dux, D., Lips, M., Alig, M., & Dumondel, M. (2012). On the link between economic and environmental performance of Swiss dairy farms of the alpine area. The International Journal of Life Cycle Assessment, 17, 706–719. https://doi.org/10.1007/s11367-012-0405-z
Jouan, J., Ridier, A., & Carof, M. (2020). SYNERGY: A regional bio-economic model analyzing farm-to-farm exchanges and legume production to enhance agricultural sustainability. Ecological Economics, 175, 106688. https://doi.org/10.1016/j.ecolecon.2020.106688
Kanter, D. R., Musumba, M., Wood, S. L. R., Palm, C., Antle, J., Balvanera, P., Dale V. H., Havlik P., Kline, K. L., Scholes, R. J., Thornton, P., Tittonell, P., & Andelman, S. (2018). Evaluating agricultural trade-offs in the age of sustainable development. Agricultural Systems, 163, 73–88. https://doi.org/10.1016/j.agsy.2016.09.010
Kebede, A. S., Nicholls, R. J., Clarke, D., Savin, C., & Harrison, P. A. (2021). Integrated assessment of the food-water-land-ecosystems nexus in Europe: Implications for sustainability. Science of the Total Environment, 768, 144461. https://doi.org/10.1016/j.scitotenv.2020.144461
Kline, R. B. (2011). Principles and practice of structural equation modelling (3rd ed.). The Guilford Press.
Lemaire, G., Franzluebbers, A., Carvalho, P. C., & Dedieu, B. (2014). Integrated crop-livestock systems: Strategies to achieve synergy between agricultural production and environmental quality. Agriculture, Ecosystems & Environment, 190, 4–8. https://doi.org/10.1016/j.agee.2013.08.009
Li, T., Lü, Y., Fu, B., Comber, A. J., Harris, P., & Wu, L. (2017). Gauging policy-driven large-scale vegetation restoration programmes under a changing environment: Their effectiveness and socio-economic relationships. Science of Total Environment, 607–608, 911–919. https://doi.org/10.1016/j.scitotenv.2017.07.044
Martínez-Sastre, R., Miñarroa, M., & García, D. (2020). Animal biodiversity in cider apple orchards: Simultaneous environmental drivers and effects on insectivory and pollination. Agriculture, Ecosysyems and Environment, 295, 106918. https://doi.org/10.1016/j.agee.2020.106918
Meul, M., Van Passel, S., Nevens, F., Dessein, J., Rogge, E., Mulier, A., & Van Hauwermeiren, A. (2008). MOTIFS: A monitoring tool for inte-grated farm sustainability. Agronomy for Sustainable Development, 28(2), 321–332. https://doi.org/10.1051/agro:2008001
Meyfroidt, P., Abeygunawardane, D., Ramankutty, N., Thomson, A., & Zeleke, G. (2019). Interactions between land systems and food systems. Current Opinion in Environmental Sustainability, 38, 60–67. https://doi.org/10.1016/j.cosust.2019.04.010
Nicholson, C. C., Emery, B. F., & Niles, M. T. (2021). Global relationships between crop diversity and nutritional stability. Nature Communications, 12, 5310. https://doi.org/10.1038/s41467-021-25615-2
Niewęgłowski, M., Gugała, M., Włodarczyk, B., & Sikorska, A. (2018). Ecological evaluation of sustainable development in the studied farms of Przysucha county. Ecological Engineering, 19(6), 146–152. https://doi.org/10.12911/22998993/91877
OECD. (2008). Handbook on constructing composite indicators: Methodology and user guide. OECD Publications. https://doi.org/10.1787/9789264043466-en
Parry, S. (2020). Fit Statistics commonly reported for CFA and SEM. Cornell University, Cornell Statistical Consulting Unit. https://dokumen.tips/documents/fit-statistics-commonly-reported-for-cfa-and-sem-parry-kline-suggests-that-at-a.html
Paut, R., Sabatier, R., & Tchamitchian, M. (2020). Modeling crop diversification and association effects in agricultural systems. Agriculture, Ecosystems & Environment, 288, 106711. https://doi.org/10.1016/j.agee.2019.106711
Picazo-Tadeo, A., Gomez-Limon, J., & Reig-Martínez, E. (2011). Assessing farming eco-efficiency: A data envelopment analysis approach. Journal of Environmental Management, 92(4), 1154–1164. https://doi.org/10.1016/j.jenvman.2010.11.025
Power, A. G. (2010). Ecosystem services and agriculture: Tradeoffs and synergies. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 2959–2971. https://doi.org/10.1098/rstb.2010.0143
Reddy, A. A., Rani, C. R., Cadman, T., Kumar, S. N., & Reddy, A. N. (2016). Towards sustainable indicators of food and nutritional outcomes in India. World Journal of Science, Technology and Susatinable, 13(2), 128–142. https://doi.org/10.1108/WJSTSD-10-2015-0049
Reig-Martínez, E., Gómez-Limón, J. A., & Picazo-Tadeo, A. J. (2011). Ranking farms with a composite indicator of sustainability. Agricultural Economics-Blackwell, 42(5), 561–575. https://doi.org/10.1111/j.1574-0862.2011.00536.x
Ripoll-Bosch, R., Díez-Unquera, B., Ruiz, R., Villalba, D., Molina, E., Joy, M., Olaizola, A., & Bernués, A. (2012). An integrated sustainability assessment of Mediterranean sheep farms with different degrees of intensification. Agricultural Systems, 105(1), 46–56. https://doi.org/10.1016/j.agsy.2011.10.003
Rogall, H. (2004). Ökonomie der Nachhaltigkeit. Handlungsfelder für Politik und Wirtschaft. VS Verlag für Sozialwissenschaften. https://doi.org/10.1007/978-3-322-81029-8
Sarkar, A., Azim, J. A., Al Asif, A., Qian, L., & Peau, A. K. (2021). Structural equation modeling for indicators of sustainable agriculture: Prospective of a developing country’s agriculture. Land Use Policy, 109, 105638. https://doi.org/10.1016/j.landusepol.2021.105638
Schaak, H., & Mußhoff, O. (2018). Understanding the adoption of grazing practices in German dairy farming. Agricultural Systems, 165, 230–239. https://doi.org/10.1016/j.agsy.2018.06.015
Shi, Y., Pinsard, C., & Accatino, F. (2021). Land sharing strategies for addressing the trade-off between carbon storage and crop production in France. Regional Environmental Change, 21, 92. https://doi.org/10.1007/s10113-021-01818-7
Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O’Mara, F., Rice, Ch., Scholes, B., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Romanenkov, V., Schneider, U., & Towprayoon, S. (2007). Policy and tech-nological constraints to implementation of greenhouse gas mitigation options in agriculture. Agriculture, Ecosystems & Environment, 118(1–4), 6–28. https://doi.org/10.1016/j.agee.2006.06.006
Solazzo, R., & Pierangeli, F. (2016). How does greening affect farm behavior? Trade-off between commitments and sanctions in the Northern Italy. Agricultural Systems, 149, 88–98. https://doi.org/10.1016/j.agsy.2016.07.013
StataCorp. (2017). Stata: Release 15. Statistical Software. StataCorp LLC, College Station, TX.
Stoate, C., Báldi, A., Beja, P., Boatman, N. D., Herzon, I., Van Doorn, A., de Snoo, G. R., Rakosy, L. & Ramwell, C. (2009). Ecological impacts of early 21st century agricultural change in Europe – a review. Journal of Environmental Management, 91(1), 22–46. https://doi.org/10.1016/j.jenvman.2009.07.005
Sulewski, P., & Kłoczko-Gajewska, A. (2018). Development of the sustainability index of farms based on surveys and FADN sample. Problems of Agricultural Economics, 356(3), 32–56. https://doi.org/10.30858/zer/94474
Sulewski, P., Kłoczko-Gajewska, A., & Sroka, W. (2018). Relations between agri-environmental, economic and social dimensions of farms’ sus-tainability. Sustainability, 10(12), 4629. https://doi.org/10.3390/su10124629
Tomarken, A. J., & Waller, N. G. (2005). Structural equation modeling: Strengths, limitations, and misconceptions. Annual Review of Clinical Psychology, 1, 31–65. https://doi.org/10.1146/annurev.clinpsy.1.102803.144239
Van Grinsven, H., Van Eerdt, M., Westhoek, H., & Kruitwagen, S. (2019). Benchmarking eco-Efficiency and footprints of Dutch agriculture in European context and implications for policies for climate and environment. Frontiers in Sustainable Food Systems, 3, 13. https://doi.org/10.3389/fsufs.2019.00013
Wrzaszcz, W. (2018). Changes in farms’ environmental sustainability in Poland – progress or regress? AgBioForum, 2(21), 107–126.
Zahm, F., Viaux, P., Vilain, L., Girardin, P., & Mouchet, C. (2008). Assessing farm sustainability with the IDEA method – from the concept of agriculture sustainability to case studies on farms. Sustainable Development, 16(4), 271–281. https://doi.org/10.1002/sd.380