Multiple criteria approach applied to digital transformation in Fashion stores: the case of physical retailers in Spain
Abstract
In a very open competitive context where pure online players are consistently gaining market share, the use of digital devices is a steady trend which is penetrating physical retail stores as a tool for retailers to improve customer experience and increase engagement. This need has increased with the COVID-19 pandemic as electronic devices in physical stores reduce the contact between people providing a greater sense of health safety, hence improving the customer experience. This work develops a multiple-criteria decision-making model for retailers who want to digitize their physical stores, providing a systematic approach to manage investment priorities in the organization. Important decisions should involve all different areas of the organization: Finance, Clients, Internal Processes and Learning & Growth departments. This strategic decision can be made hierarchically to obtain consistent decisions, also the use of the Order Weighted Average operator allows for alternative scenarios to be presented and agreed among the different areas of the business. The authors develop a use case for a Spanish fashion retailer. In the most widely agreed scenario the preferred devices were more technologically complex and expensive, while in the scenarios where the head of Finance is more predominant, cheaper and simpler devices were selected.
Keyword : store digitization, multiple-criteria decision making, customer experience, in-store technology, interactive marketing, retail
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Accenture. (2020). Growth: It comes down to experience. Moving beyond CX to the Business of Experience. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjS2MyT2bX0AhWRLewKHXtCCaUQFnoECAQQAQ&url=https%3A%2F%2Fwww.accenture.com%2F_acnmedia%2FThought-Leadership-Assets%2FPDF-3%2FAccenture-Interactive-Business-of-Experience-Full-Report.pdf&usg=AOvVaw1bYMSYOrVBrGBypXb1GVgN
Accenture. (2020b). COVID-19 consumer pulse research. https://www.accenture.com/us-en/insights/retail/coronavirus-consumer-habits
Akkermans, H., & Van Oorschot, K. (2005). Developing a balanced scorecard with system dynamics. Journal of the Operational Research Society, 40(56), 931–941.
Alexander, B., & Alvarado, D. O. (2017). Convergence of physical and virtual retail spaces: the influence of technology on consumer in-store experience. In A. Vecchi (Ed.), Advanced fashion technology and operations management (pp. 191–219). IGI Global. https://doi.org/10.4018/978-1-5225-1865-5.ch008
Appel, O., Chiclana, F., Carter, J., & Fujita, H. (2017). A consensus approach to the sentiment analysis problem driven by support-based IOWA majority. International Journal of Intelligent Systems, 32(9), 947–965. https://doi.org/10.1002/int.21878
Babu, S. R.; Babu, P. R., & Narayana, M. S. (2012). Retail Technology: A competitive tool for customer service. International Journal of Engineering Science and Advanced Technology, 2(1), 110–116.
Barnabè, F. (2011). A “system dynamics-based Balanced Scorecard” to support strategic decision making. International Journal of Productivity and Performance Management, 60(5), 446–473. https://doi.org/10.1108/17410401111140383
Belghiti, S., Ochs, A., Lemoine, J. F., & Badot, O. (2018). The phygital shopping experience: An attempt at conceptualization and empirical inves-tigation. In Academy of Marketing Science World Marketing Congress. Marketing Transformation: Marketing Practice in an Ever Changing World (pp. 61–74). Springer, Cham. https://doi.org/10.1007/978-3-319-68750-6_18
Bentes, A. V., Carneiro, J., da Silva, J. F., & Kimura, H. (2012). Multidimensional assessment of organizational performance: Integrating BSC and AHP. Journal of Business Research, 65(12), 1790–1799. https://doi.org/10.1016/j.jbusres.2011.10.039
Bonetti, F., & Perry, P. (2017). A review of consumer-facing digital technologies across different types of fashion store formats. In A. Vecchi (Ed.), Advanced fashion technology and operations management (pp. 137–163). IGI Global. https://doi.org/10.4018/978-1-5225-1865-5.ch006
Bonetti, F., Perry, P., Quinn, L., & Warnaby, G. (2018, June). Evaluating managerial drivers and barriers to the implementation of in-store technology in fashion retailing: An abstract. In P. Rossi & N. Krey (Eds.), Finding new ways to engage and satisfy global customers (pp. 455–456). Springer, Cham. https://doi.org/10.1007/978-3-030-02568-7_127
Boroushaki, S., & Malczewski, J. (2008). Implementing an extension of the analytical hierarchy process using ordered weighted averaging operators with fuzzy quantifiers in ArcGIS. Computers & Geosciences, 34(4), 399–410. https://doi.org/10.1016/j.cageo.2007.04.003
Carrasco, R. A., Forero, L. N., López, S. X., Herrera-Viedma, E., & Porcel, C. (2018). Using the AHP model to improve the measurement of satisfaction in the ICT sector. In Frontiers in artificial intelligence and applications: Vol. 303. New trends in intelligent software methodologies, tools and techniques (pp. 299–311). https://doi.org/10.3233/978-1-61499-900-3-299
Chan, F. T., & Kumar, N. (2007). Global supplier development considering risk factors using fuzzy extended AHP-based approach. Omega, 35(4), 417–431. https://doi.org/10.1016/j.omega.2005.08.004
Chou, T. Y., Hsu, C. L., & Chen, M. C. (2008). A fuzzy multi-criteria decision model for international tourist hotels location selection. International Journal of Hospitality Management, 27(2), 293–301. https://doi.org/10.1016/j.ijhm.2007.07.029
Cobo, M. J., López‐Herrera, A. G., Herrera‐Viedma, E., & Herrera, F. (2012). SciMAT: A new science mapping analysis software tool. Journal of the American Society for Information Science and Technology, 63(8), 1609–1630. https://doi.org/10.1002/asi.22688
Daniel, J., & Merigó, J. M. (2021). Developing a new multidimensional model for selecting strategic plans in balanced scorecard. Journal of Intelligent & Fuzzy Systems, 40(2), 1817–1826. https://doi.org/10.3233/JIFS-189188
Dennis, C., Brakus, J. J., Gupta, S., & Alamanos, E. (2014). The effect of digital signage on shoppers’ behavior: The role of the evoked experience. Journal of Business Research, 67(11), 2250–2257. https://doi.org/10.1016/j.jbusres.2014.06.013
Dong, J., & Zhang, D. (2002). Supply chain networks with multicritera decision makers. In M. A. P. Taylor (Ed.), Transportation and traffic theory in the 21st century (pp. 179–196). Emerald Group Publishing Limited. https://doi.org/10.1108/9780585474601-010
Dong, Y., Liu, Y., Liang, H., Chiclana, F., & Herrera-Viedma, E. (2018). Strategic weight manipulation in multiple attribute decision making. Omega: The International Journal of Management Science, 75, 154–164. https://doi.org/10.1016/j.omega.2017.02.008
Edelman, D. C., & Singer, M. (2015). Competing on customer journeys: You have to create new value at every step. Harvard Business Review, 93, 88–100.
Fundación Orange. (2016). eEspaña Retail: La transformación digital en el sector retail. Evoca Comunicación. http://www.fundacionorange.es/wp-content/uploads/2016/07/eE_La_transformacion_digital_del_sector_retail.pdf
Fornell, C., Mithas, S., Morgeson, F. V., & Krishnan, M. S. (2006). Customer satisfaction and stock prices: High returns, low risk. Journal of Marketing, 70(1), 3–14. https://doi.org/10.1509/jmkg.70.1.003.qxd
Gil-Lafuente, A. M., Merigó, J. M., & Vizuete, E. (2014). Analysis of luxury resort hotels by using the fuzzy analytic hierarchy process and the fuzzy Delphi method. Economic Research-Ekonomska Istraživanja, 27(1), 244–266. https://doi.org/10.1080/1331677X.2014.952106
Grewal, D., Roggeveen, A. L., & Nordfalt, J. (2017). The future of retailing. Journal of Retailing, 93(1), 1–6. https://doi.org/10.1016/j.jretai.2016.12.008
Gupta, S., Lehmann, D. R., & Stuart, J. A. (2004). Valuing customers. Journal of Marketing Research, 41(1), 7–18. https://doi.org/10.1509/jmkr.41.1.7.25084
Gutierrez-Toranzo, L., & Llorens, M. (2018). Lo 2.0 y 3.0 como herramientas multidisciplinares. In Uso de las nuevas tecnologías durante el proceso de compra en el comercio minorista (pp. 187–198). Ediciones Universitarias. Editorial Tecnos.
Hickman, E., Kharouf, H., & Sekhon, H. (2020). An omnichannel approach to retailing: Demystifying and identifying the factors influencing an omnichannel experience. The International Review of Retail, Distribution and Consumer Research, 30(3), 266–288. https://doi.org/10.1080/09593969.2019.1694562
Homburg, C., Jozić, D., & Kuehnl, C. (2017). Customer experience management: Toward implementing an evolving marketing concept. Journal of the Academy of Marketing Science, 45(3), 377–401. https://doi.org/10.1007/s11747-015-0460-7
Hsu, C., & Lin, J. C. (2016). Effect of perceived value and social influences on mobile app stickiness and in-app purchase intention. Technological Forecasting and Social Change, 108, 42–53. https://doi.org/10.1016/j.techfore.2016.04.012
Hussain, W., Merigo, J. M., Gao, H., Alkalbani, A. M., & Rabhi, F. (2021). Integrated AHP-IOWA, POWA Framework for ideal cloud provider selection and optimum resource management. IEEE Transactions on Services Computing. https://doi.org/10.1109/TSC.2021.3124885
Inman, J. J., & Nikolova, H. (2017). Shopper-facing retail technology: A retailer adoption decision framework incorporating shopper attitudes and privacy concerns. Journal of Retailing, 93(1), 7–28. https://doi.org/10.1016/j.jretai.2016.12.006
Jalali, M. S., Ferreira, F. A., Ferreira, J. J., & Meidutė-Kavaliauskienė, I. (2016). Integrating metacognitive and psychometric decision-making approaches for bank customer loyalty measurement. International Journal of Information Technology & Decision Making, 15(4), 815–837. https://doi.org/10.1142/S0219622015500236
Jiang, H., & Eastman, J. R. (2000). Application of fuzzy measures in multi-criteria evaluation in GIS. International Journal of Geographical Information Science, 14(2), 173–184. https://doi.org/10.1080/136588100240903
Kaplan, R. S., & Norton, D. P. (1992). The balanced scorecard-measures that drive performance. Harvard Business Review, (January-February), 71–79.
Kaplan, R. S., & Norton, D. P. (2001). The strategy focused organization: How balanced scorecard companies thrive in the new business environment. Harvard Business Press.
Kent, A., Vianello, M., Cano, M. B., & Helberger, E. (2016). Omnichannel fashion retail and channel integration: The case of department stores. In A. Vecchi & C. Buckley (Eds.), Handbook of research on global fashion management and merchandising (pp. 398–419). IGI Global. https://doi.org/10.4018/978-1-5225-0110-7.ch016
Keyes, D. (2018, January 9). Amazon captured 4% of US retail sales in 2017. Business Insider. Retrieved August 6, 2018, from https://www.businessinsider.de/amazon-captured-4-of-us-retail-sales-in-2017-2018-1
Kumar, N., Scheer, L., & Kotler, P. (2000). From market driven to market driving, European Management Journal, 18(2), 129–142. https://doi.org/10.1016/S0263-2373(99)00084-5
Kumar, V., & Reinartz, W. (2016). Creating enduring customer value. Journal of Marketing, 80(6), 36–68. https://doi.org/10.1509/jm.15.0414
Kumar, V., & Shah, D. (2009). Expanding the role of marketing: from customer equity to market capitalization. Journal of Marketing, 73(6), 119–136. https://doi.org/10.1509/jmkg.73.6.119
Leeflang, P. S., Verhoef, P. C., Dahlström, P., & Freundt, T. (2014). Challenges and solutions for marketing in a digital era. European Management Journal, 32(1), 1–12. https://doi.org/10.1016/j.emj.2013.12.001
Lemon, K. N., & Verhoef, P. C. (2016). Understanding customer experience throughout the customer journey. Journal of Marketing, 80(6), 69–96. https://doi.org/10.1509/jm.15.0420
Leung, L. C., Lam, K. C., & Cao, D. (2006). Implementing the balanced scorecard using the analytic hierarchy process & the analytic network process. Journal of the Operational Research Society, 57(6), 682–691. https://doi.org/10.1057/palgrave.jors.2602040
Libai, B., Bolton, R., Bügel, M. S., Ruyter, K. D., Götz, O., Risselada, H., & Stephen, A. T. (2010). Customer-to-customer interactions: Broadening the scope of word of mouth research. Journal of Service Research, 13(3), 267–282. https://doi.org/10.1177/1094670510375600
Liljiander, V., Gillberg, F., Gummerus, J., & van Riel, A. (2006). Technology readiness and the evaluation and adoption of self-service technologies. Journal of Retailing and Consumer Service, 13(3), 177–191. https://doi.org/10.1016/j.jretconser.2005.08.004
Lin, C., Kou, G., Peng, Y., & Alsaadi, F. E. (2020). Two-stage prioritization procedure for multiplicative AHP-group decision making. Technological and Economic Development of Economy, 26(2), 525–545. https://doi.org/10.3846/tede.2020.12037
Linares‐Mustarós, S., Ferrer‐Comalat, J. C., Corominas‐Coll, D., & Merigó, J. M. (2019). The ordered weighted average in the theory of expertons. International Journal of Intelligent Systems, 34(3), 345–365. https://doi.org/10.1002/int.22055
Malczewski, J., & Rinner, C. (2005). Exploring multicriteria decision strategies in GIS with linguistic quantifiers: A case study of residential quality evaluation. Journal of Geographical Systems, 7(2), 249–268. https://doi.org/10.1007/s10109-005-0159-2
Marin-Garcia, A., Gil-Saura, I., & Ruiz-Molina, M. E. (2021). Do innovation and sustainability influence customer satisfaction in retail? A question of gender. Economic Research-Ekonomska Istrazivanja. https://doi.org/10.1080/1331677X.2021.1924217
Merigó, J. M., & Wei, G. (2011). Probabilistic aggregation operators and their application in uncertain multi-person decision-making. Technological and Economic Development of Economy, 17(2), 335–351. https://doi.org/10.3846/20294913.2011.584961
Merigó, J. M., Gil-Lafuente, A. M., Zhou, L. G., & Chen, H. Y. (2012). Induced and linguistic generalized aggregation operators and their application in linguistic group decision making. Group Decision and Negotiation, 21(4), 531–549. https://doi.org/10.1007/s10726-010-9225-3
Merigó, J. M., Gil-Lafuente, A. M., & Yager, R. R. (2015). An overview of fuzzy research with bibliometric indicators. Applied Soft Computing, 27, 420–433. https://doi.org/10.1016/j.asoc.2014.10.035
Mintel. (2021). UK Fashion: Technology and innovation market report 2021.
Modak, M., Pathak, K., & Ghosh, K. K. (2017). Performance evaluation of outsourcing decision using a BSC and Fuzzy AHP approach: A case of the Indian coal mining organization. Resources Policy, 52, 181–191. https://doi.org/10.1016/j.resourpol.2017.03.002
Nielsen. (2016). Is e-tail therapy the new retail therapy?
Nielsen, S., & Nielsen, E. H. (2015). The balanced scorecard and the strategic learning process: A system dynamics modeling approach. Advances in Decision Sciences, 2015, 213758. https://doi.org/10.1155/2015/213758
Oliva, G., Scala, A., Setola, R., & Dell’Olmo, P. (2019). Opinion-based optimal group formation. Omega, 89, 164–176. https://doi.org/10.1016/j.omega.2018.10.008
Park, J. S., Ha, S., & Jeong, S. W. (2020). Consumer acceptance of self-service technologies in fashion retail stores. Journal of Fashion Marketing and Management, 25(2), 371–388. https://doi.org/10.1108/JFMM-09-2019-0221
Pine, B. L., & Gilmore, J. H. (1999). The experience economy: Work is theater & every business a stage. Harvard Business School Press.
Poncin, I., & Ben-Mimoun, M. S. (2014). The impact of “e-atmospherics” on physical stores. Journal of Retailing and Consumer Services, 21(5), 851–859. https://doi.org/10.1016/j.jretconser.2014.02.013
Rawson, A., Duncan, E., & Jones, C. (2013). The truth about customer experience. Harvard Business Review, 91(9), 90–98.
Reinartz, W., Wiegand, N., & Imschloss, M. (2019). The impact of digital transformation on the retailing value chain. International Journal of Research in Marketing, 36(3), 350–366. https://doi.org/10.1016/j.ijresmar.2018.12.002
Richardson, A. (2010). Using customer journey maps to improve customer experience. Harvard Business Review, 15(1), 2–5.
Ryding, D. (2010). The impact of new technologies on customer satisfaction and business to business customer relationships: evidence from the soft drinks industry. Journal of Retailing and Consumer Services, 17(3), 224–228. https://doi.org/10.1016/j.jretconser.2010.03.008
Roig-Tierno, N., Baviera-Puig, A., Buitrago-Vera, J., & Mas-Verdu, F. (2013). The retail site location decision process using GIS and the analytical hierarchy process. Applied Geography, 40, 191–198. https://doi.org/10.1016/j.apgeog.2013.03.005
Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83–98.
Saaty, T. L. (1980). The analytic hierarchy process. McGraw Hill.
Sánchez-Gutiérrez, J., Cabanelas, P., Lampón, J. F., & González-Alvarado, T. E. (2019). The impact on competitiveness of customer value creation through relationship capabilities and marketing innovation. Journal of Business & Industrial Marketing, 34(3), 618–627. https://doi.org/10.1108/JBIM-03-2017-0081
Siregar, Y., & Kent, A. (2019), Consumer experience of interactive technology in fashion stores. International Journal of Retail & Distribution Management, 47(12), 1318–1335. https://doi.org/10.1108/IJRDM-09-2018-0189
Sorensen, H. (2016). Inside the mind of the shopper: The science of retailing. Pearson Education inc.
Sundharam, V. N., Sharma, V., & Stephan Thangaiah, I. S. (2013). An integration of BSC and AHP for sustainable growth of manufacturing industries. International Journal of Business Excellence, 6(1), 77–92. https://doi.org/10.1504/IJBEX.2013.050577
Tomar, S., & Saha, S. (2016). In-store digitization and technology advocacy among retail consumers. Amity Journal of Management, 1(1), 40–49.
Verhoef, P. C., Kannan, P., & Inman, J. J. (2015). From multi-channel retailing to omni-channel retailing. Journal of Retailing, 91(2), 174–181. https://doi.org/10.1016/j.jretai.2015.02.005
Verhoef, P. C., Stephen, A. T., Kannan, P. K., Luo, X., Abhishek, V., Andrews, M., Bart, Y., Datta, H., Fong, N., Hoffman, D. L., Hu, M. M., Novak, T., Rand, W., & Zhang, Y. (2017). Consumer connectivity in a complex, technology-enabled, and mobile-oriented world with smart products. Journal of Interactive Marketing, 40, 1–8. https://doi.org/10.1016/j.intmar.2017.06.001
Wolpert, S., & Roth, A. (2020). Development of a classification framework for technology based retail services: A retailers’ perspective. The International Review of Retail, Distribution and Consumer Research, 30(5), 498–537. https://doi.org/10.1080/09593969.2020.1768575
Yager, R. R. (1988). On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Transactions on Systems, Man, and Cybernetics, 18(1), 183–190. https://doi.org/10.1109/21.87068
Yager, R. R. (1996). Quantifier guided aggregation using OWA operators. International Journal of Intelligent Systems, 11(1), 49–73. 3.0.CO;2-Z> https://doi.org/10.1002/(SICI)1098-111X(199601)11:1<49::AID-INT3>3.0.CO;2-Z
Yager, R. R., & Kelman, A. (1999). An extension of the analytical hierarchy process using OWA operators. Journal of Intelligent & Fuzzy Systems, 7(4), 401–417.
Yıldız, N., & Tüysüz, F. (2019). A hybrid multi-criteria decision making approach for strategic retail location investment: Application to Turkish food retailing. Socio-Economic Planning Sciences, 68, 100619. https://doi.org/10.1016/j.seps.2018.02.006
Zabihi, H., Alizadeh, M., Kibet Langat, P., Karami, M., Shahabi, H., Ahmad, A., Nor Said, M., & Lee, S. (2019). GIS multi-criteria analysis by Ordered Weighted Averaging (OWA): Toward an integrated citrus management strategy. Sustainability, 11(4), 1009. https://doi.org/10.3390/su11041009
Zadeh, L. A. (1983). A computational approach to fuzzy quantifiers in natural languages. Computers & Mathematics with Applications, 9(1), 149–184. https://doi.org/10.1016/B978-0-08-030253-9.50016-0
Zhang, Y., Bouadi, T., Wang, Y., & Martin, A. (2021). A distance for evidential preferences with application to group decision making. Information Sciences, 568, 113–132. https://doi.org/10.1016/j.ins.2021.03.011
Zwilling, M. (2015, June 9). “Customer experience” is today’s business benchmark. Forbes Magazine. https://www.forbes.com/sites/martinzwilling/2014/03/10/customer-experience-is-todays-business-benchmark/