CODAS method with Probabilistic hesitant fuzzy information and its application to environmentally & economically balanced supplier selection
Abstract
With the rise of the concept of environmental protection and the attention of all sectors of society to the ecological environment, the selection of green suppliers is a hot topic. In this paper, we develop the combinative distance-based assessment (CODAS) method in the probabilistic hesitant fuzzy sets (PHFSs) to cope with the multiple attributes group decision making (MAGDM). A standardized approach that integrates multiple methods is applied to normalize the original data. Moreover, the statistics variance (SV) method is applied under PHFSs to calculate the objective weighting vector of evaluation criteria. In the end, a case for supplier selection and the comparative analysis are used to confirm the feasibility and utility of this new approach.
First published online 30 August 2022
Keyword : multiple attributes group decision making (MAGDM), probabilistic hesitant fuzzy sets (PHFSs), CODAS method, supplier selection
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Bolturk, E., & Kahraman, C. (2018). Interval-valued intuitionistic fuzzy CODAS method and its application to wave energy facility location selection problem. Journal of Intelligent & Fuzzy Systems, 35(4), 4865–4877. https://doi.org/10.3233/JIFS-18979
Bolturk, E., & Kahraman, C. (2019). A modified interval-valued Pythagorean Fuzzy CODAS Method and evaluation of AS/RS technologies. Journal of Multiple-Valued Logic and Soft Computing, 33, 415–429.
Buyukozkan, G., & Cifci, G. (2012). A novel hybrid MCDM approach based on fuzzy DEMATEL, fuzzy ANP and fuzzy TOPSIS to evaluate green suppliers. Expert Systems with Applications, 39(3), 3000–3011. https://doi.org/10.1016/j.eswa.2011.08.162
Chatterjee, K., Pamucar, D., & Zavadskas, E. K. (2018). Evaluating the performance of suppliers based on using the R’AMATEL-MAIRCA method for green supply chain implementation in electronics industry. Journal of Cleaner Production, 184, 101–129. https://doi.org/10.1016/j.jclepro.2018.02.186
Gegovska, T., Koker, R., & Cakar, T. (2020). Green supplier selection using fuzzy multiple-criteria decision-making methods and artificial neural networks. Computational Intelligence and Neuroscience, 2020, 8811834. https://doi.org/10.1155/2020/8811834
Gitinavard, H., Ghaderi, H., & Pishvaee, M. S. (2018). Green supplier evaluation in manufacturing systems: A novel interval-valued hesitant fuzzy group outranking approach. Soft Computing, 22, 6441–6460. https://doi.org/10.1007/s00500-017-2697-1
Gomes, L., & Rangel, L. A. D. (2009). An application of the TODIM method to the multicriteria rental evaluation of residential properties. European Journal of Operational Research, 193(1), 204–211. https://doi.org/10.1016/j.ejor.2007.10.046
He, T., Wei, G., Wu, J., & Wei, C. (2021). QUALIFLEX method for evaluating human factors in construction project management with Pythagorean 2-tuple linguistic information. Journal of Intelligent & Fuzzy Systems, 40(3), 4039–4050. https://doi.org/10.3233/JIFS-200379
Jiang, Z., Wei, G., & Guo, Y. (2022). Picture fuzzy MABAC method based on prospect theory for multiple attribute group decision making and its application to suppliers selection. Journal of Intelligent & Fuzzy Systems, 42(4), 3405–3415. https://doi.org/10.3233/JIFS-211359
Karasan, A., Zavadskas, E. K., Kahraman, C., & Keshavarz-Ghorabaee, M. (2019). Residential construction site selection through interval-valued hesitant fuzzy CODAS method. Informatica, 30(4), 689–710. https://doi.org/10.15388/Informatica.2019.225
Keshavarz Ghorabaee, M., Amiri, M., Zavadskas, E. K., Hooshmand, R., & Antucheviciene, J. (2017). Fuzzy extension of the CODAS method for multi-criteria market segment evaluation. Journal of Business Economics and Management, 18(1), 1–19. https://doi.org/10.3846/16111699.2016.1278559
Keshavarz-Ghorabaee, M., Amiri, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2018). Simultaneous Evaluation of Criteria and Alternatives (SECA) for Multi-Criteria Decision-Making. Informatica, 29(2), 265–280. https://doi.org/10.15388/Informatica.2018.167
Keshavarz Ghorabaee, M., Zavadskas, E. K., Olfat, L., & Turskis, Z. (2015). Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica, 26(3), 435–451. https://doi.org/10.15388/Informatica.2015.57
Keshavarz Ghorabaee, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2016). A new combinative distance-based assessment (CODAS) method for multi-criteria decision-making. Economic Computation and Economic Cybernetics Studies and Research, 50(3), 25–44.
Lai, Y. J., Liu, T. Y., & Hwang, C. L. (1994). TOPSIS for MODM. European Journal of Operational Research, 76(3), 486–500. https://doi.org/10.1016/0377-2217(94)90282-8
Lei, F., Wei, G., & Chen, X. (2021). Model-based evaluation for online shopping platform with probabilistic double hierarchy linguistic CODAS method. International Journal of Intelligent Systems, 36(9), 5339–5358. https://doi.org/10.1002/int.22514
Lei, F., Wei, G., Shen, W., & Guo, Y. (2022). PDHL-EDAS method for multiple attribute group decision making and its application to 3D printer selection. Technological and Economic Development of Economy, 28(1), 179–200. https://doi.org/10.3846/tede.2021.15884
Li, J., Chen, Q. X., Niu, L. L., & Wang, Z. X. (2020). An ORESTE approach for multi-criteria decision-making with probabilistic hesitant fuzzy information. International Journal of Machine Learning and Cybernetics, 11, 1591–1609. https://doi.org/10.1007/s13042-020-01060-3
Li, J., Niu, L. L., Chen, Q. X., & Wu, G. (2020). A consensus-based approach for multi-criteria decision making with probabilistic hesitant fuzzy information. Soft Computing, 24, 15577–15594. https://doi.org/10.1007/s00500-020-04886-9
Liao, H. C., Ren, R. X., Antucheviciene, J., Saparauskas, J., & Al-Barakati, A. (2020). Sustainable construction supplier selection by a multiple criteria decision-making method with hesitant linguistic information. E & M Ekonomie a Management, 23(4), 119–136. https://doi.org/10.15240/tul/001/2020-4-008
Liao, N., Gao, H., Wei, G., & Chen, X. (2021). CPT-MABAC-based multiple attribute group decision making method with probabilistic hesitant fuzzy information. Journal of Intelligent & Fuzzy Systems, 41(6), 6999–7014. https://doi.org/10.3233/JIFS-210889
Liao, N., Wei, G., & Chen, X. (2022). TODIM method based on cumulative prospect theory for multiple attributes group decision making under probabilistic hesitant fuzzy setting. International Journal of Fuzzy Systems, 24, 322–339. https://doi.org/10.1007/s40815-021-01138-2
Liou, J. J. H., Chuang, Y. C., Zavadskas, E. K., & Tzeng, G. H. (2019). Data-driven hybrid multiple attribute decision-making model for green supplier evaluation and performance improvement. Journal of Cleaner Production, 241, 118321. https://doi.org/10.1016/j.jclepro.2019.118321
Liu, S., Chan, F. T. S., & Ran, W. X. (2016). Decision making for the selection of cloud vendor: An improved approach under group decision-making with integrated weights and objective/subjective attributes. Expert Systems with Applications, 55, 37–47. https://doi.org/10.1016/j.eswa.2016.01.059
Mansouri, M., & Leghris, C. (2019). New Manhattan distance-based fuzzy MADM method for the network selection. IET Communications, 13(13), 1980–1987. https://doi.org/10.1049/iet-com.2018.5454
Mousavi, S. M., Foroozesh, N., Zavadskas, E. K., & Antucheviciene, J. (2020). A new soft computing approach for green supplier selection problem with interval type-2 trapezoidal fuzzy statistical group decision and avoidance of information loss. Soft Computing, 24, 12313–12327. https://doi.org/10.1007/s00500-020-04675-4
Ning, B., Wei, G., Lin, R., & Guo, Y. (2022). A novel MADM technique based on extended power generalized Maclaurin symmetric mean operators under probabilistic dual hesitant fuzzy setting and their application to sustainable suppliers selection. Expert Systems with Applications, 204, 117419. https://doi.org/10.1016/j.eswa.2022.117419
Özdağoğlu, A., Keleş, M. K., Anıl, A., & Ulutaş, A. (2021). Combining different MCDM methods with the Copeland method: An investigation on motorcycle selection. Journal of Process Management and New Technologies, 9(3–4), 13–27. https://doi.org/10.5937/jouproman2103013O
Paelinck, J. H. P. (1978). Qualiflex: Flexible multiple-criteria method. Economics Letters, 1(3), 193–197. https://doi.org/10.1016/0165-1765(78)90023-X
Pamucar, D., & Cirovic, G. (2015). The selection of transport and handling resources in logistics centers using Multi-Attributive Border Approximation area Comparison (MABAC). Expert Systems with Applications, 42(6), 3016–3028. https://doi.org/10.1016/j.eswa.2014.11.057
Peng, X. D., & Garg, H. (2018). Algorithms for interval-valued fuzzy soft sets in emergency decision making based on WDBA and CODAS with new information measure. Computers & Industrial Engineering, 119, 439–452. https://doi.org/10.1016/j.cie.2018.04.001
Popović, M. (2021). An MCDM approach for personnel selection using the CoCoSo method. Journal of Process Management and New Technologies, 9(3–4), 78–88. https://doi.org/10.5937/jouproman2103078P
Qu, G. H., Zhang, Z. J., Qu, W. H., & Xu, Z. H. (2020). Green supplier selection based on green practices evaluated using fuzzy approaches of TOPSIS and ELECTRE with a case study in a Chinese Internet Company. International Journal of Environmental Research and Public Health, 17(9), 3268. https://doi.org/10.3390/ijerph17093268
Sansabas-Villalpando, V., Perez-Olguin, I. J. C., Perez-Dominguez, L. A., Rodriguez-Picon, L. A., & Mendez-Gonzalez, L. C. (2019). CODAS HFLTS method to appraise organizational culture of innovation and complex technological changes environments. Sustainability, 11(24), 7045. https://doi.org/10.3390/su11247045
Sha, X., Yin, C., Xu, Z., & Zhang, S. (2021). Probabilistic hesitant fuzzy TOPSIS emergency decision-making method based on the cumulative prospect theory. Journal of Intelligent & Fuzzy Systems, 40(3), 4367–4383. https://doi.org/10.3233/JIFS-201119
Su, Y., Zhao, M., Wei, G., Wei, C., & Chen, X. (2022). Probabilistic uncertain linguistic EDAS method based on prospect theory for multiple attribute group decision-making and its application to green finance. International Journal of Fuzzy Systems, 24, 1318–1331. https://doi.org/10.1007/s40815-021-01184-w
Tavana, M., Shaabani, A., Santos-Arteaga, F. J., & Valaei, N. (2021). An integrated fuzzy sustainable supplier evaluation and selection framework for green supply chains in reverse logistics. Environmental Science and Pollution Research, 28, 53953–53982. https://doi.org/10.1007/s11356-021-14302-w
Wang, S., Wei, G., Lu, J., Wu, J., Wei, C., & Chen, X. (2022). GRP and CRITIC method for probabilistic uncertain linguistic MAGDM and its application to site selection of hospital constructions. Soft Computing, 26, 237–251. https://doi.org/10.1007/s00500-021-06429-2
Wei, G., Lin, R., Lu, J., Wu, J., & Wei, C. (2022). The generalized dice similarity measures for probabilistic uncertain linguistic MAGDM and its application to location planning of electric vehicle charging stations. International Journal of Fuzzy Systems, 24, 933–948. https://doi.org/10.1007/s40815-021-01084-z
Wu, J., Liu, X. D., Wang, Z. W., & Zhang, S. T. (2019). Dynamic emergency decision-making method with probabilistic hesitant fuzzy information based on GM(1,1) and TOPSIS. IEEE Access, 7, 7054–7066. https://doi.org/10.1109/ACCESS.2018.2890110
Wu, X. L., Liao, H. C., Zavadskas, E. K., & Antucheviciene, J. (2022). A probabilistic linguistic VIKOR method to solve mcdm problems with inconsistent criteria for different alternatives. Technological and Economic Development of Economy, 28(2), 559–580. https://doi.org/10.3846/tede.2022.16634
Xu, Z. S., & Zhou, W. (2017). Consensus building with a group of decision makers under the hesitant probabilistic fuzzy environment. Fuzzy Optimization and Decision Making, 16, 481–503. https://doi.org/10.1007/s10700-016-9257-5
Zhang, D., Su, Y., Zhao, M., & Chen, X. (2022). CPT-TODIM method for interval neutrosophic MAGDM and its application to third-party logistics service providers selection. Technological and Economic Development of Economy, 28(1), 201–219. https://doi.org/10.3846/tede.2021.15758
Zhang, H., Wei, G., & Chen, X. (2022). SF-GRA method based on cumulative prospect theory for multiple attribute group decision making and its application to emergency supplies supplier selection. Engineering Applications of Artificial Intelligence, 110, 104679. https://doi.org/10.1016/j.engappai.2022.104679
Zhang, H. Y., Wei, G. W., & Wei, C. (2022). TOPSIS method for spherical fuzzy MAGDM based on cumulative prospect theory and combined weights and its application to residential location. Journal of Intelligent & Fuzzy Systems, 42(3), 1367–1380. https://doi.org/10.3233/JIFS-210267
Zhang, W. K., Du, J., & Tian, X. L. (2018). Finding a promising venture capital project with TODIM under probabilistic hesitant fuzzy circumstance. Technological and Economic Development of Economy, 24(5), 2026–2044. https://doi.org/10.3846/tede.2018.5494
Zhao, M., Gao, H., Wei, G., Wei, C., & Guo, Y. (2022). Model for network security service provider selection with probabilistic uncertain linguistic TODIM method based on prospect theory. Technological and Economic Development of Economy, 28(3), 638–654. https://doi.org/10.3846/tede.2022.16483
Zhao, M., Wei, G., Chen, X., & Wei, Y. (2021). Intuitionistic fuzzy MABAC method based on cumulative prospect theory for multiple attribute group decision making. International Journal of Intelligent Systems, 36(11), 6337–6359. https://doi.org/10.1002/int.22552
Zheng, G. Z., Jing, Y. Y., Huang, H. X., & Gao, Y. F. (2010). Application of improved grey relational projection method to evaluate sustainable building envelope performance. Applied Energy, 87(2), 710–720. https://doi.org/10.1016/j.apenergy.2009.08.020