Share:


Model estimation of the whole life cost of a building with respect to risk factors

    Damian Wieczorek Affiliation
    ; Edyta Plebankiewicz Affiliation
    ; Krzysztof Zima Affiliation

Abstract

The paper deals with estimating the life cycle cost and the whole life cost of a building. An original model for estimating the life cycle cost and the whole life cost of a building which allows the quantification of the increase in costs resulting from the incurred and assessed risk is presented. The proposed model consists of two basic parts: module I evaluating the impact of identified risk factors on individual element of the life cycle cost, and module II allowing to assess life cycle cost including the risk factors selected in module I. In module I the model of fuzzy inference of Mamdani was used. The structure of module II is based on the theory of possibilities and fuzzy sets. The operation of the model is presented on the example of an office building.

Keyword : risk, life cycle, life cycle cost, cost estimation, fuzzy sets

How to Cite
Wieczorek, D., Plebankiewicz, E., & Zima, K. (2019). Model estimation of the whole life cost of a building with respect to risk factors. Technological and Economic Development of Economy, 25(1), 20-38. https://doi.org/10.3846/tede.2019.7455
Published in Issue
Jan 21, 2019
Abstract Views
1528
PDF Downloads
1021
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Ammar, M., Zayed, T., & Mosehli, O. (2012). Fuzzy-based life-cycle cost model for decision making under subjectivity. Journal of Construction Engineering and Management, 139(5), 556-563. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000576

Aye, L., Bamford, N., Charters, B., & Robinson, J. (2000). Environmentally sustainable development: a life-cycle costing approach for a commercial office building in Melbourne, Australia. Construction Management & Economics, 18(8), 927-934. https://doi.org/10.1080/014461900446885

Bromilow, F. J., & Pawsey, M. R. (1987). Life cycle cost of university buildings. Construction Management and Economics, 5(4), 3-22. https://doi.org/10.1080/01446193.1987.10462089

Flanagan, R., & Norman, G. (1983). Life cycle costing for construction. London, UK: Quantity Surveyors Division of the Royal Institution of Chartered Surveyors.

Flanagan, R., Kendell, A., Norman, G., & Robinson, G. D. (1987). Life cycle costing and risk management. Construction Management and Economics, 5(4), 53-71. https://doi.org/10.1080/01446193.1987.10462093

Frangopol, D. M., Lin, K. Y., & Estes, A. C. (1997). Life-cycle cost design of deteriorating structures. Journal of Structural Engineering, 123(10), 1390-1401. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:10(1390)

Fuller, S. K., & Boyles, A. S. (2000). Life-cycle costing workshop for energy conservation in buildings: student manual. Gaithersburg, USA: National Institute of Standards and Technology.

Gluch, P., & Baumann, H. (2004). The life cycle costing (LCC) approach: a conceptual discussion of its usefulness for environmental decision-making. Building and Environment, 39, 571-580. https://doi.org/10.1016/j.buildenv.2003.10.008

Goh, K. C., & Yang, J. (2010, May). Incorporating sustainability measures in life-cycle financial decision making for highway construction. In Proceedings of New Zealand Sustainable Building ConferenceSB10. Retrieved from https://www.irbnet.de/daten/iconda/CIB18088.pdf

Hasan, A., Vuolle, M., & Siren, K. (2008). Minimisation of life cycle cost of a detached house using combined simulation and optimisation. Building and Environment, 43(12), 2022-2034. https://doi.org/10.1016/j.buildenv.2007.12.003

Ilg, P., Scope, Ch., Muench, S., & Guenther, E. (2017). Uncertainty in life cycle costing for long-range infrastructure. Part I: leveling the playing field to address uncertainties. International Journal of Life Cycle Assessment, 22(2), 277-292. https://doi.org/10.1007/s11367-016-1154-1

International Organization for Standardization. (2008). Buildings and constructed assets. Service life planning. Part 5: Life cycle costing. (ISO 15686-5:2008). Geneva, Switzerland: International Organization for Standardization.

Kale, N. N., Joshi, D., & Menon, R. (2016). Life cycle cost analysis of commercial buildings with energy efficient approach. Perspectives in Science, 8, 452-454. https://doi.org/10.1016/j.pisc.2016.04.102

Kartam, N. A., & Kartam, S. A. (2001). Risk and its management in the Kuwaiti construction industry: a contractors’ perspective. International Journal of Project Management, 19(6), 325-335. https://doi.org/10.1016/S0263-7863(00)00014-4

Koo, Ch., Hong, T., & Park, J. (2018). Development of the life-cycle economic and environmental assessment model for establishing the optimal implementation strategy of the rooftop photovoltaic system. Technological and Economic Development of Economy, 24(1), 27-47. https://doi.org/10.3846/20294913.2015.1074127

Leśniak, A., & Zima, K. (2018). Cost calculation of construction projects including sustainability factors using the Case Based Reasoning (CBR) method. Sustainability, 10, 1608. https://doi.org/10.3390/su10051608

Mamdani, E. H. (1974). Application of fuzzy algorithms for control of simple dynamic plant. Electrical Engineers, 121(12), 1585-1588. https://doi.org/10.1049/piee.1974.0328

Mamdani, E. H. (1977). Application of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE Transactions on Computers, 100(12), 1182-1191. https://doi.org/10.1109/TC.1977.1674779

Marszal, A. J., & Heiselberg, P. (2011). Life cycle cost analysis of a multi-storey residential net zero energy building in Denmark. Energy, 36(9), 5600-5609. https://doi.org/10.1016/j.energy.2011.07.010

Menassa, C. C. (2011). Evaluating sustainable retrofits in existing buildings under uncertainty. Energy and Buildings, 43(12), 3576-3583. https://doi.org/10.1016/j.enbuild.2011.09.030

Oduyemi, O., Okoroh, M., & Fajana, O. S. (2016). Risk assessment methods for life cycle costing in buildings. Sustainable Buildings, 1, 3. https://doi.org/10.1051/sbuild/2016005

Plebankiewicz, E. (2014). Kierunki działań zmierzających do obniżenia kosztów w cyklu życia budynków miejskich. In A. Halicka (Ed.), Budownictwo na obszarach zurbanizowanych: Nauka, praktyka, perspektywy (pp. 271-282). Lublin: Wydawnictwo Politechniki Lubelskiej.

Plebankiewicz, E., Zima, K., & Wieczorek, D. (2015, June). Review of methods of determining the life cycle cost of buildings. In M. Hajdu (Ed.), Proceedings of the CC 2015, Creative Construction Conference, Kraków, Poland (pp. 309-316). Amsterdam, Netherlands: Elsevier B.V.

Plebankiewicz, E., & Wieczorek, D. (2016). Rozmyta ocena ryzyka w cyklu życia obiektów budowlanych. Materiały Budowlane, 6(526), 59-61. https://doi.org/10.15199/33.2016.06.25

Plebankiewicz, E., Zima, K., & Wieczorek, D. (2016) Life cycle cost modelling of buildings with consideration of the risk. Archives of Civil Engineering, 62(2), 35-45. https://doi.org/10.1515/ace-2015-0071

Plebankiewicz, E., Zima, K., & Wieczorek, D. (2017). Quantification of the risk addition in life cycle cost of a building object. Technical Transactions, 5, 149-166.

Plebankiewicz, E., Zima, K., & Wieczorek, D. (2018). Life Cycle Equivalent Annual Cost (LCEAC) as a comparative indicator in the life cycle cost analysis of buildings with different lifetimes. In MATEC Web of Conferences, 196. Article ID 04079. Les Ulis Cedex, France: EDP Sciences. https://doi.org/10.1051/matecconf/201819604079

Robinson, J. (1986). Life cycle costing in buildings: a practical approach. Australian Institute of Building Papers, 1, 13-28.

Stone, P. A. (1967). Building design evaluation. Suffolk, UK: The Chaucer Press Ltd.

Shevchenko, G., Ustinovichius, L., & Andruškevičius, A. (2008). Multi‐attribute analysis of investments risk alternatives in construction. Technological and Economic Development of Economy, 14(3), 428-443. https://doi.org/10.3846/1392-8619.2008.14.428-443

Sobanjo, J. O. (1999, May–June). Facility life-cycle cost analysis based on fuzzy set theory. In M. A. Lacasse & D. J. Vanier (Eds.), Proceedings of the Eighth International Conference on Durability of Building Materials and Components (Vol. 3, pp. 1798-1809). Vancouver, Canada: NRC Research Press.

Sterner, E. (2002). Green procurement of buildings: estimation of environmental impact and life-cycle cost. Lulea: Lulea Tekniska Universitet.

Wieczorek, D. (2018). Fuzzy risk assessment in the life cycle of building object – selection of the right defuzzification method. In AIP Conference Proceedings, 1978(1), 240005. Melville, NY: AIP Publishing. https://doi.org/10.1063/1.5043866

Wiguna, I. P. A., & Scott, S. (2006). Relating risk to project performance in Indonesian building contracts. Construction Management and Economics, 24(11), 1125-1135. https://doi.org/10.1080/01446190600799760

Yi, H., & Wen-jie, H. (2009, December). Analysis of the life cycle cost of the power plants based on analytic hierarchy process method. In 2009 International Conference on Information Management, Innovation Management and Industrial Engineering (Vol. 4, pp. 639-642). USA, Canada: IEEE. https://doi.org/10.1109/ICIII.2009.613

Yuting, S., & Carmichael, D. G. (2018). Uncertainties related to financial variables within infrastructure life cycle costing: a literature review. Structure and Infrastructure Engineering, 14(9), 1233-1243. https://doi.org/10.1080/15732479.2017.1418008

Zavadskas, E. K., Antuchevičienė, J., & Kapliński, O. (2015a). Multi-criteria decision making in civil engineering: Part I − a state-of-the-art survey. Engineering Structures and Technologies, 7(3), 103-113. https://doi.org/10.3846/2029882X.2015.1143204

Zavadskas, E. K., Antuchevičienė, J., & Kapliński, O. (2015b). Multi-criteria decision making in civil engineering. Part II − applications. Engineering Structures and Technologies, 7(4), 151-167. https://doi.org/10.3846/2029882X.2016.1139664

Zhi, H. (1995). Risk management for overseas construction projects. International Journal of Project Management, 13(4), 231-237. https://doi.org/10.1016/0263-7863(95)00015-I