Unité de Recherche Appliquée en Energies Renouvelables, URAER, Centre de Développement des Energies Renouvelables, CDER, 47133, Ghardaïa, Algeria; University of Tlemcen, BP. 119, Tlemcen R.p. 13000 Algeria
In order to reduce the energy load, understanding the overall architectural design features and optimizing building orientation are important. They are guided by natural elements like sunlight and its intensity, direction of the wind, seasons of the year and temperature variations. The main aim of presented analysis is to give solutions for architects to design standard and low energy buildings in a proper way. The orientation effect of a non-air-conditioned building on its thermal performance has been analyzed in terms of direct solar gain and temperature index for hot-dry climates. This paper aims at introducing an improved methodology for the dynamic modeling of buildings by the thermal nodal method. The study is carried out using computer simulation. This study examines also the effect of geometric shapes on the total solar insolation received by a real building. As a result, the influence of orientation changing depends on the floors and exterior walls construction materials, the insulation levels and application of the inseparable rules of the bioclimatic design. Solar radiation is the most major contributor to heat gain in buildings.
Hamdani, M., Bekkouche, S. M. E. A., Benouaz, T., Belarbi, R., & Cherier, M. K. (2014). Minimization of indoor temperatures and total solar insolation by optimizing the building orientation in hot climate. Engineering Structures and Technologies, 6(3), 131-149. https://doi.org/10.3846/2029882X.2014.988756
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in Engineering Structures and Technologies as Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECHto make alternative agreements.