Share:


The analysis of heavy metal pollutants emitted by railway transport

    Rasa Vaiškūnaitė Affiliation
    ; Vilma Jasiūnienė Affiliation

Abstract

Recently, concern for a rapid increase in heavy metal pollutants released by railway transport has been expressed. Most of pollutant emissions from combustion processes are related to fuel consumption in the internal combustion engines of traction rolling stock. The main pollutants released into the environment cover particulate matter, volatile non-methane organic compounds, sulphur dioxide and nitrogen oxides. In this way, it is likely that the biggest polluters of the environment are traction units with internal combustion engines. However, other types of pollution are possible, where polluters can be not only traction rolling stock with the internal combustion engines, but also electric locomotive. For example, when due to friction of metals and deterioration of rolling stock wheels, heavy metals such as aerosols are released into the atmosphere, soil, surface and ground water, etc. and severely pollute the railway environment. Along with an increase in the electrification of railways, local environmental pollution is likely to be increased in the future. High pollution by heavy metals can also occur near the track storing creosote-impregnated wooden railway sleepers. Having analysed railway transport intensity and in order to assess pollution level, the stations of three major cities of Lithuania (Vilnius, Kaunas and Klaipėda) were selected to investigate heavy metal pollutants (lead (Pb), cadmium (Cd), zinc (Zn)) acting as the most toxic and widespread elements. The highest concentrations of Pb (up to 50 mg/kg) were found at a distance of 5.0 m from railway sleepers in the upper (up to 10 cm) soil layer at Vilnius Railway Station. A comparison of the results of the investigated soil across the tested stations showed that Klaipėda Railway Station was the area most polluted with Cd. The highest concentrations of Cd (up to 1.5…1.8 mg/kg) were established at a varying distance of 5…10 m from the sleepers in the upper (up to 10 cm) soil layer of light loam. Among the investigated stations, the lowest pollution by heavy metals, including Zn, was found at Kaunas Railway Station where sandy loam dominated. A comparison of heavy metal pollutants deposited on the intact used and rotten wooden railway sleepers disclosed that the latter were more heavily contaminated with heavy metals and made from 8 to 13 mg/kg for Pb, from 0.3 to 1.2 mg/kg for Cd, from 13.8 to 66 mg/kg for Zn.

Keyword : railway transport, pollution, wooden railway sleepers, environmental protection, soil pollution, heavy metals, lead, cadmium, zinc

How to Cite
Vaiškūnaitė, R., & Jasiūnienė, V. (2020). The analysis of heavy metal pollutants emitted by railway transport. Transport, 35(2), 213-223. https://doi.org/10.3846/transport.2020.12751
Published in Issue
May 20, 2020
Abstract Views
1951
PDF Downloads
1020
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Bai, J.; Xiao, R.; Cui, B.; Zhang, K.; Wang, Q.; Liu, X.; Gao, H.; Huang, L. 2011. Assessment of heavy metal pollution in wetland soils from the young and old reclaimed regions in the Pearl River Estuary, South China, Environmental Pollution 159(3): 817–824. https://doi.org/10.1016/j.envpol.2010.11.004

Baumhardt, R. L.; Stewart, B. A.; Sainju, U. M. 2015. North American soil degradation: processes, practices, and mitigating strategies, Sustainability 7(3): 2936–2960. https://doi.org/10.3390/su7032936

Blake, L.; Goulding, K. W. T. 2002. Effects of atmospheric deposition, soil pH and acidification on heavy metal contents in soils and vegetation of semi-natural ecosystems at Rothamsted experimental station, UK, Plant and Soil 240(2): 235–251. https://doi.org/10.1023/A:1015731530498

Blok, J. 2005. Environmental exposure of road borders to zinc, Science of the Total Environment 348(1–3): 173–190. https://doi.org/10.1016/j.scitotenv.2004.12.073

Burkhardt, M.; Rossi, L.; Boller, M. 2008. Diffuse release of environmental hazards by railways, Desalination 226(1–3): 106–113. https://doi.org/10.1016/j.desal.2007.02.102

Chen, X.; Xia, X. H.; Zhao, Y.; Zhang, P. 2010. Heavy metal concentrations in roadside soils and correlation with urban traffic in Beijing, China, Journal of Hazardous Materials 181(1–3): 640–646. https://doi.org/10.1016/j.jhazmat.2010.05.060

Chen, Z.; Wang, K. X.; Ai, Y. W.; Li, W.; Gao, H.; Fang, C. 2014. The effects of railway transportation on the enrichment of heavy metals in the artificial soil on railway cut slopes, Environmental Monitoring and Assessment 186(2): 1039–1049. https://doi.org/10.1007/s10661-013-3437-3

Christoforidis, A.; Stamatis, N. 2009. Heavy metal contamination in street dust and roadside soil along the major national road in Kavala’s region, Greece, Geoderma 151(3–4): 257–263. https://doi.org/10.1016/j.geoderma.2009.04.016

Dai, J.; Becquer, T.; Rouiller, J. H.; Reversat, G.; Bernhard-Reversat, F.; Lavelle, P. 2004. Influence of heavy metals on C and N mineralisation and microbial biomass in Zn-, Pb-, Cu-, and Cd-contaminated soils, Applied Soil Ecology 25(2): 99–109. https://doi.org/10.1016/j.apsoil.2003.09.003

Davis, A. P.; Shokouhian, M.; Ni, S. 2001. Loading estimates of lead, copper, cadmium, and zinc in urban runoff from specific sources, Chemosphere 44(5): 997–1009. https://doi.org/10.1016/s0045-6535(00)00561-0

Fakayode, S. O.; Olu-Owolabi, B. I. 2003. Heavy metal contamination of roadside topsoil in Osogbo, Nigeria: its relationship to traffic density and proximity to highways, Environmental Geology 44(2): 150–157. https://doi.org/10.1007/s00254-002-0739-0

Fonseca, B.; Figueiredo, H.; Rodrigues, J.; Queiroz, A.; Tavares, T. 2011. Mobility of Cr, Pb, Cd, Cu and Zn in a loamy sand soil: a comparative study, Geoderma 164(3–4): 232–237. https://doi.org/10.1016/j.geoderma.2011.06.016

Guo, G.; Wu, F.; Xie, F.; Zhang, R. 2012. Spatial distribution and pollution assessment of heavy metals in urban soils from southwest China, Journal of Environmental Sciences 24(3): 410–418. https://doi.org/10.1016/s1001-0742(11)60762-6

Hasselbach, L.; Ver Hoef, J. M.; Ford, J.; Neitlich, P.; Crecelius, E.; Berryman, S.; Wolk, B.; Bohle, T. 2005. Spatial patterns of cadmium and lead deposition on and adjacent to national park service lands in the vicinity of Red Dog Mine, Alaska, Science of the Total Environment 348(1–3): 211–300. https://doi.org/10.1016/j.scitotenv.2004.12.084

Helmreich, B.; Hilliges, R.; Schriewer, A.; Horn, H. 2010. Run-off pollutants of a highly trafficked urban road – correlation analysis and seasonal influences, Chemosphere 80(9): 991–997. https://doi.org/10.1016/j.chemosphere.2010.05.037

HN 60:2015. Pavojingųjų cheminių medžiagų ribinės vertės dirvožemyje. Lietuvos higienos norma. Lietuvos Respublikos sveikatos apsaugos ministerija. (in Lithuanian).

Ho, Y. B.; Tai, K. M. 1988. Elevated levels of lead and other metals in roadside soil and grass and their use to monitor aerial metal depositions in Hong Kong, Environmental Pollution 49(1): 37–51. https://doi.org/10.1016/0269-7491(88)90012-7

Huang, B.; Kuo, S., Bembenek, R. 2004. Availability of cadmium in some phosphorus fertilizers to field-grown lettuce, Water, Air, & Soil Pollution: an International Journal of Environmental Pollution 158(1): 37–51. https://doi.org/10.1023/B:WATE.0000044832.04770.41

Khan, M. N.; Wasim, A. A.; Sarwar, A.; Rasheed, M. F. 2011a. Assessment of heavy metal toxicants in the roadside soil along the N-5, national highway, Pakistan, Environmental Monitoring and Assessment 182(1–4): 587–595. https://doi.org/10.1007/s10661-011-1899-8

Khan, S.; Khan, M. A.; Rehman, S. 2011b. Lead and cadmium contamination of different roadside soils and plants in Peshawar City, Pakistan, Pedosphere 21(3): 351–357. https://doi.org/10.1016/S1002-0160(11)60135-5

Kim, K.-H.; Kim, S.-H. 1999. Heavy metal pollution of agricultural soils in central regions of Korea, Water, Air, & Soil Pollution: an International Journal of Environmental Pollution 111(1–4): 109–122. https://doi.org/10.1023/A:1005056310428

Kluge, B.; Wessolek, G. 2012. Heavy metal pattern and solute concentration in soils along the oldest highway of the world – the AVUS Autobahn, Environmental Monitoring and Assessment 184(11): 6469–6481. https://doi.org/10.1007/s10661-011-2433-8

Koeleman, M.; Vd Laak, W. J.; Ietswaart, H. 1999. Dispersion of PAH and heavy metals along motorways in the Netherlands – an overview, Science of the Total Environment 235(1–3): 347–349. https://doi.org/10.1016/s0048-9697(99)00253-3

Langmi, H. W.; Watt, J. 2003. Evaluation of computer-controlled SEM in the study of metal-contaminated soils, Mineralogical Magazine 67(2): 219–231. https://doi.org/10.1180/0026461036720096

Li, F.-R.; Kang, L.-F.; Gao, X.-Q.; Hua, W.; Yang, F.-W.; Hei, W.-L. 2007. Traffic-related heavy metal accumulation in soils and plants in Northwest China, Soil and Sediment Contamination: an International Journal 16(5): 473–484. https://doi.org/10.1080/15320380701490168

Lee, S.-H.; Kim, E.-Y.; Hyun, S.; Kim, J.-G. 2009. Metal availability in heavy metal-contaminated open burning and open detonation soil: assessment using soil enzymes, earthworms, and chemical extractions, Journal of Hazardous Materials 170(1): 382–388. https://doi.org/10.1016/j.jhazmat.2009.04.088

Liu, H.; Chen, L.-P.; Ai, Y.-W.; Yang, X.; Yu, Y.-H.; Zuo, Y.-B.; Fu, G.-Y. 2009. Heavy metal contamination in soil alongside mountain railway in Sichuan, China, Environmental Monitoring and Assessment 152(1–4): 25–33. https://doi.org/10.1007/s10661-008-0293-7

Lorenzo, R.; Kaegi, R.; Gehrig, R.; Grobéty, B. 2006. Particle emissions of a railway line determined by detailed single particle analysis, Atmospheric Environment 40(40): 7831–7841. https://doi.org/10.1016/j.atmosenv.2006.07.026

LST ISO 10381-1:2005. Dirvožemio kokybė. Ėminių ėmimas. 1 dalis. Ėminių ėmimo programų sudarymo vadovas (in Lithuanian).

LST ISO 10381-2:2005. Dirvožemio kokybė. Ėminių ėmimas. 2 dalis. Ėmimo būdų vadovas (in Lithuanian).

LST ISO 10381-3:2003. Dirvožemio kokybė. Ėminių ėmimas. 3 dalis. Saugos vadovas (in Lithuanian).

LST ISO 10381-4:2006. Dirvožemio kokybė. Ėminių ėmimas. 4 dalis. Natūralių, pusiau natūralių ir dirbamų sklypų tyrimo vadovas (in Lithuanian).

LST ISO 10381-5:2007. Dirvožemio kokybė. Ėminių ėmimas. 5 dalis. Miesto ir pramoninių sklypų dirvožemio taršos tyrimo vadovas (in Lithuanian).

LST CEN/TS 16172:2013. Dumblas, apdorotos bioatliekos ir dirvožemis. Elementų nustatymas atominės absorbcinės spektrometrijos grafitinėje krosnelėje (GF-AAS) metodu (in Lithuanian).

LST CEN/TS 16188:2012. Dumblas, apdorotos bioatliekos ir dirvožemis. Karališkajame vandenyje ir nitrato rūgštyje tirpių elementų nustatymas. Liepsnos atominės absorbcinės spektrometrijos (LAAS) metodas (in Lithuanian).

Ma, J.-H.; Chu, C.-J.; Li, J.; Song, B. 2009. Heavy metal pollution in soils on railroad side of Zhengzhou–Putian section of Longxi–Haizhou railroad, China, Pedosphere 19(1): 121–128. https://doi.org/10.1016/S1002-0160(08)60091-0

Malawska, M.; Wiołkomirski, B. 2001. An analysis of soil and plant (taraxacum officinale) contamination with heavy metals and polycyclic aromatic hydrocarbons (PAHs) in the area of the railway junction Iława Główna, Poland, Water, Air, & Soil Pollution: an International Journal of Environmental Pollution 127(1–4): 339–349. https://doi.org/10.1023/A:1005236016074

Morra, P.; Lisi, R.; Spadoni, G.; Maschio, G. 2009. The assessment of human health impact caused by industrial and civil activities in the Pace Valley of Messina, Science of the Total Environment 407(12): 3712–3720. https://doi.org/10.1016/j.scitotenv.2009.03.005

Nabulo, G.; Oryem-Origa, H.; Diamond, M. 2006. Assessment of lead, cadmium, and zinc contamination of roadside soils, surface films, and vegetables in Kampala City, Uganda, Environmental Research 101(1): 42–52. https://doi.org/10.1016/j.envres.2005.12.016

Norrström, A. C. 2005. Metal mobility by de-icing salt from an infiltration trench for highway runoff, Applied Geochemistry 20(10): 1907–1919. https://doi.org/10.1016/j.apgeochem.2005.06.002

Olajire, A. A.; Ayodele, E. T. 1997. Contamination of roadside soil and grass with heavy metals, Environment International 23(1): 91–101. https://doi.org/10.1016/S0160-4120(96)00080-3

Pagotto, C.; Rémy, N.; Legret, M.; Le Cloirec, P. 2001. Heavy metal pollution of road dust and roadside soil near a major rural highway, Environmental Technology 22(3): 307–319. https://doi.org/10.1080/09593332208618280

Paschke, M. W.; DeLeo, C.; Redente, E. F. 2000. Revegetation of roadcut slopes in Mesa Verde national park, U.S.A., Restoration Ecology 8(3): 276–282. https://doi.org/10.1046/j.1526-100x.2000.80039.x

Plakhotnik, V. N.; Onyshchenko, J. V.; Yaryshkina, L. A. 2005. The environmental impacts of railway transportation in the Ukraine, Transportation Research Part D: Transport and Environment 10(3): 263–268. https://doi.org/10.1016/j.trd.2005.02.001

Saeedi, M.; Hosseinzadeh, M.; Jamshidi, A.; Pajooheshfar, S. P. 2009. Assessment of heavy metals contamination and leaching characteristics in highway side soils, Iran, Environmental Monitoring and Assessment 151(1–4): 231–241. https://doi.org/10.1007/s10661-008-0264-z

Saeedi, M.; Li, L. Y.; Salmanzadeh, M. 2012. Heavy metals and polycyclic aromatic hydrocarbons: Pollution and ecological risk assessment in street dust of Tehran, Journal of Hazardous Materials 227–228: 9–17. https://doi.org/10.1016/j.jhazmat.2012.04.047

Sansalone, J. J.; Buchberger, S. G. 1997. Partitioning and first flush of metals in urban roadway storm water, Journal of Environmental Engineering 123(2): 134–143. https://doi.org/10.1061/(ASCE)0733-9372(1997)123:2(134)

Sezgin, N.; Ozcan, H. K.; Demir, G.; Nemlioglu, S.; Bayat, C. 2004. Determination of heavy metal concentrations in street dusts in Istanbul E-5 highway, Environment International 29(7): 979–985. https://doi.org/10.1016/S0160-4120(03)00075-8

Shi, G.; Chen, Z.; Xu, S.; Zhang, J.; Wang, L.; Bi, C.; Teng, J. 2008. Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China, Environmental Pollution 156(2): 251–260. https://doi.org/10.1016/j.envpol.2008.02.027

Smičiklas, I.; Jović, M.; Šljivić-Ivanović, M.; Mrvić, V.; Čakmak, D.; Dimović, S. 2015. Correlation of Sr2+ retention and distribution with properties of different soil types, Geoderma 253–254: 21–29. https://doi.org/10.1016/j.geoderma.2015.04.003

Stojić, N.; Pucarević, M.; Mrkajić, D.; Kecojević, I. 2014. Transformers as a potential for soil contamination, Metalurgija 53(4): 689–692.

Stojic, N.; Pucarevic, M.; Stojic, G. 2017. Railway transportation as a source of soil pollution, Transportation Research Part D: Transport and Environment 57: 124–129. https://doi.org/10.1016/j.trd.2017.09.024

Sun, Y.; Zhou, Q.; Xie, X.; Liu, R. 2010. Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China, Journal of Hazardous Materials 174(1–3): 455–462. https://doi.org/10.1016/j.jhazmat.2009.09.074

Száková, J.; Miholová, D.; Tlustoš, P.; Šestáková, I.; Frková, Z. 2010. Effect of soil properties and sample preparation on extractable and soluble Pb and Cd fractions in soils, Agricultural Sciences 1(3): 119–130. https://doi.org/10.4236/as.2010.13015

Šeda, M.; Šíma, J.; Volavka, T.; Vondruška, J. 2017. Contamination of soils with Cu, Na and Hg due to the highway and railway transport, Eurasian Journal of Soil Science 6(1): 59–64. https://doi.org/10.18393/ejss.284266

Tromp, K.; Lima, A. T.; Barendregt, A.; Verhoeven, J. T. A. 2012. Retention of heavy metals and poly-aromatic hydrocarbons from road water in a constructed wetland and the effect of de-icing, Journal of Hazardous Materials 203–204: 290–298. https://doi.org/10.1016/j.jhazmat.2011.12.024

Vilniškis, R.; Vaiškūnaitė, R. 2018. Complex contamination research and hazard assessment of the waste of the wooden railway sleeper, Baltic Journal of Road and Bridge Engineering 13(4): 385–403. https://doi.org/10.7250/bjrbe.2018-13.424

Vitaliano, D. F. 1992. An economic assessment of the social costs of highway salting and the efficiency of substituting a new deicing material, Journal of Policy Analysis and Management 11(3): 397–418. https://doi.org/10.2307/3325069

Wei, B.; Yang, L. 2010. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China, Microchemical Journal 94(2): 99–107. https://doi.org/10.1016/j.microc.2009.09.014

Wierzbicka, M.; Bemowska-Kałabun, O.; Gworek, B. 2015. Multidimensional evaluation of soil pollution from railway tracks, Ecotoxicology 24(4): 805–822. https://doi.org/10.1007/s10646-015-1426-8

Wiłkomirski, B.; Galera, H.; Sudnik-Wójcikowska, B.; Staszewski, T.; Malawska, M. 2012. Railway tracks – habitat conditions, contamination, floristic settlement – a review, Environment and Natural Resources Research 2(1): 86–95. https://doi.org/10.5539/enrr.v2n1p86

Wiłkomirski, B.; Sudnik-Wójcikowska, B.; Galera, H.; Wierzbicka, M.; Malawska, M. 2011. Railway transportation as a serious source of organic and inorganic pollution, Water, Air, & Soil Pollution: an International Journal of Environmental Pollution 218 (1–4): 333–345. https://doi.org/10.1007/s11270-010-0645-0

Zehetner, F.; Rosenfellner, U.; Mentler, A.; Gerzabek, M. H. 2009. Distribution of road salt residues, heavy metals and polycyclic aromatic hydrocarbons across a highway-forest interface, Water, Air, & Soil Pollution: an International Journal of Environmental Pollution 198(1–4): 125–132. https://doi.org/10.1007/s11270-008-9831-8

Zhang, H.; Wang, Z.; Zhang, Y.; Hu, Z. 2012. The effects of the Qinghai–Tibet railway on heavy metals enrichment in soils, Science of the Total Environment 439: 240–248. https://doi.org/10.1016/j.scitotenv.2012.09.027

Zhang, H.; Zhang, Y.; Wang, Z.; Ding, M. 2013. Heavy metal enrichment in the soil along the Delhi–Ulan section of the Qinghai–Tibet railway in China, Environmental Monitoring and Assessment 185(7): 5435–5447. https://doi.org/10.1007/s10661-012-2957-6