Share:


Analysis of composite material properties and their possibilities to use them in bus frame construction

    Tautvydas Pravilonis Affiliation
    ; Edgar Sokolovskij Affiliation

Abstract

Energy consumption and the emission of harmful particles have increased significantly in recent decades. The constant development of transport poses an increasing threat to the environment. The search for alternative energy-saving solutions is closely linked to the development and improvement of new vehicles, reducing their negative impact on the environment. Fiberglass or carbon fiber are among the most promising materials that can reduce weight in all types of vehicles. They are also much easier to recycle than steel. Fiberglass or carbon fiber composite materials are widely used in a variety of applications: construction, ships, and trains. Vehicles and buses are no exception. These innovative materials are used not only for interior elements but also in constructional units for the production of light duty vehicles. Meanwhile in buses these material are not yet used in safety frame. Bus safety frames are made out of steel. Therefore, in this work the fiberglass composite material from which the tubes are made by pultrusion process would replace the steel tube in the safety frame construction of the bus. Such technology could reduce the weight of the bus safety frame by about 20%. Other parameters would also be affected by weight reduction: safety: bus would be less overloaded, the braking distance would be reduced, the center of gravity position would be closer to the ground; environmental: lower air pollution due to lower CO2 emissions; economic: lower fuel consumption. However, before using such technology, it is necessary to determine the properties of the composite material. Properties were determined by tensile and shear tests (ISO 527-2:2012 and ASTM D5379/D5379M-19). Comparison tests of different materials (tensile and crushing tests) were also performed. According to the experimental results, conclusions were drawn regarding the possibility of using fiberglass for the bus frame.


First published online 1 July 2020

Keyword : composite, glass fiber-reinforced polymer (GFRP), tensile test, crushing test, shear test, bus, construction, weight

How to Cite
Pravilonis, T., & Sokolovskij, E. (2020). Analysis of composite material properties and their possibilities to use them in bus frame construction. Transport, 35(4), 368-378. https://doi.org/10.3846/transport.2020.13018
Published in Issue
Sep 22, 2020
Abstract Views
1494
PDF Downloads
1200
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

ASTM D5379/D5379M-19. Standard Test Method for Shear Properties of Composite Materials by the V-Notched Beam Method. https://doi.org/10.1520/D5379_D5379M-19

Atmakuri, A.; Palevičius, A.; Griskevičius, P.; Janušas, J. 2019. Investigation of mechanical properties of hemp and flax fibers hybrid composites for biomedical applications, Mechanika 25(2): 149–155. https://doi.org/10.5755/j01.mech.25.2.22712

Bojtár, G.; Csizmadia, B. M.; Égert, J. 2016. Numerical estimation method of orthotropic material properties of a roving for reinforcement of composite materials, Acta Polytechnica Hungarica 13(6): 163–182. https://doi.org/10.12700/APH.13.6.2016.6.9

Correia, J. R.; Branco, F.; Gonilha, J.; Silva, N.; Camotim, D. 2010. Glass fibre reinforced polymer pultruded flexural members: assessment of existing design methods, Structural Engineering International 20(4): 362–369. https://doi.org/10.2749/101686610793557771

Duan, S.; Yang, X.; Tao, Y.; Mo, F.; Xiao, Z.; Wei, K. 2018. Experimental and numerical investigation of long glass fiber reinforced polypropylene composite and application in automobile components, Transport 33(5): 1135–1143. https://doi.org/10.3846/16484142.2017.1323231

Engineering ToolBox. 2005. Modulus of Rigidity. Available from Internet: https://www.engineeringtoolbox.com/modulus-rigidity-d_946.html

Ficzere, P.; Borbas, L.; Falk, G.; Szebenyi, G. 2018. Experimental determination of material model of machine parts produced by selective laser sintering (SLS) technology, Materials Today: Proceedings 5(13): 26489–26494. https://doi.org/10.1016/j.matpr.2018.08.104

Fontaras, G.; Zacharof, N.-G.; Ciuffo, B. 2017. Fuel consumption and CO2 emissions from passenger cars in Europe – laboratory versus real-world emissions, Progress in Energy and Combustion Science 60: 97–131. https://doi.org/10.1016/j.pecs.2016.12.004

Grzesiak, M. J.; Kowalik, M.; Suprynowicz, K. 2018. Digital image correlation in Ioscipescu shear test, Mechanika 24(4): 399–403. https://doi.org/10.5755/j01.mech.4.24.20301

Helms, H.; Kräck, J. 2016. Energy Savings by Light-Weighting – 2016 Update. Institute for Energy and Environmental Research, Heidelberg, Germany. 70 p. Available from Internet: https://www.european-aluminium.eu/media/1878/ifeu-energy-savings-by-light-weighting-2016-update-full-report.pdf

ISO 527-2:2012. Plastics – Determination of Tensile Properties – Part 2: Test Conditions for Moulding and Extrusion Plastics.

Ivković, I.; Kaplanović, S.; Sekulić, D. 2019. Analysis of external costs of CO2 emissions for CNG buses in intercity bus service, Transport 34(5): 529–538. https://doi.org/10.3846/transport.2019.11473

Jeon, K.-W.; Shin, K.-B.; Kim, J.-S. 2013. A study on evaluation of fatigue strength of a GFRP composite bogie frame for urban subway vehicles, Advanced Composite Materials 22(4): 213–225. https://doi.org/10.1080/09243046.2013.795215

Keya, K. N.; Kona, N. A.; Koly, F. A.; Maraz, K. M.; Islam, M. N.; Khan, R. A. 2019. Natural fiber reinforced polymer composites: history, types, advantages and applications, Materials Engineering Research 1(2): 69−85. https://doi.org/10.25082/MER.2019.02.006

Khashaba, U. A.; Sebaey, T. A.; Mahmoud, F. F.; Selmy, A. I.; Hamouda, R. M. 2013. Experimental and numerical analysis of pinned-joints composite laminates: effects of stacking sequences, Journal of Composite Materials 47(27): 3353–3366. https://doi.org/10.1177/0021998312464891

Lebedevas, S.; Dailydka, S.; Jastremskas, V.; Rapalis, P. 2017. Research of energy efficiency and reduction of environmental pollution in freight rail transportation, Transport 32(3): 291–301. https://doi.org/10.3846/16484142.2016.1230888

Li, Z.; Khennane, A.; Hazell, P. J.; Brown, A. D. 2017. Impact behaviour of pultruded GFRP composites under low-velocity impact loading, Composite Structures 168: 360–371. https://doi.org/10.1016/j.compstruct.2017.02.073

Liu, Q.; Lin, Y.; Zong, Z.; Sun, G.; Li, Q. 2013. Lightweight design of carbon twill weave fabric composite body structure for electric vehicle, Composite Structures 97: 231–238. https://doi.org/10.1016/j.compstruct.2012.09.052

Luty, W. 2018. Simulation-based analysis of the impact of vehicle mass on stopping distance, Eksploatacja i Niezawodność – Maintenance and Reliability 20(2): 182–189. https://doi.org/10.17531/ein.2018.2.03

Mahir, F. I.; Keya, K. N.; Sarker, B.; Nahiun, K. M.; Khan, R. A. 2019. A brief review on natural fiber used as a replacement of synthetic fiber in polymer composites, Materials Engineering Research 1(2): 86–97. https://doi.org/10.25082/MER.2019.02.007

Mohammed, L.; Ansari, M. N. M.; Pua, G.; Jawaid, M.; Islam, M. S. 2015. A review on natural fiber reinforced polymer composite and its applications, International Journal of Polymer Science 2015: 243947. https://doi.org/10.1155/2015/243947

MS. 2004. Shear Test Methods. Materials Solutions (MS), Polymer Composites. Available from Internet: http://www.materialssolutions.info/shear.html

Mukesh; Godara, S. S. 2019. Effect of chemical modification of fiber surface on natural fiber composites: a review, Materials Today: Proceedings 18: 3428–3434. https://doi.org/10.1016/j.matpr.2019.07.270

Nasrollahi, M.; Razmi, J.; Ghodsi, R. 2018. A computational method for measuring transport related carbon emissions in a healthcare supply network under mixed uncertainty: an empirical study, Promet – Traffic & Transportation 30(6): 693–708. https://doi.org/10.7307/ptt.v30i6.2779

Odegard, G.; Kumosa, M. 2000. Determination of shear strength of unidirectional composite materials with the Iosipescu and 10° off-axis shear tests, Composites Science and Technology 60(16): 2917–2943. https://doi.org/10.1016/S0266-3538(00)00141-X

Park, C.-K.; Kan, C.-D.; Hollowell, W. T. 2014. Evaluation of crash- worthiness of a carbon-fibre-reinforced polymer (CFRP) ladder frame in a body-on-frame vehicle, International Journal of Crashworthiness 19(1): 27–41. https://doi.org/10.1080/13588265.2013.830940

Santos, L. S.; Pagano, R. L.; Calado, V. M. A.; Biscaia, E. C. 2015. Optimization of a pultrusion process using finite difference and particle swarm algorithms, Brazilian Journal of Chemical Engineering 32(2): 543–553. https://doi.org/10.1590/0104-6632.20150322s00003181

Silva, F. J. G.; Amorim, E.; Baptista, A.; Pinto, G.; Campilho, R. D. S. G.; Castro, M. R. A. 2017. Producing hybrid pultruded structural products based on preforms, Composites Part B: Engineering 116: 325–332. https://doi.org/10.1016/j.compositesb.2016.10.070

Soric, Z.; Galic, J.; Rukavina, T. 2008. Determination of tensile strength of glass fiber straps, Materials and Structures 41(5): 879–890. https://doi.org/10.1617/s11527-007-9291-4

Stewart, R. 2011. Rebounding automotive industry welcome news for FRP, Reinforced Plastics 55(1): 38–44. https://doi.org/10.1016/S0034-3617(11)70036-4

Suresh, M. G.; Suresh, R. 2019. Evaluation of tensile properties of jute natural fiber reinforced PU polymer matrix composite material, International Journal of Engineering and Advanced Technology 8(6): 335–339. https://doi.org/10.35940/ijeat.E7670.088619

Topaç, M. M.; Karaca, M.; Aksoy, B.; Deryal, U.; Bilal, L. 2020. Lightweight design of a rear axle connection bracket for a heavy commercial vehicle by using topology optimisation: a case study, Mechanika 26(1): 64–72. https://doi.org/10.5755/j01.mech.26.1.23141

Török, Á. 2017. Comparative analysis between the theories of road transport safety and emission, Transport 32(2): 192–197. https://doi.org/10.3846/16484142.2015.1062798

Vanagas, E.; Kliukas, R.; Lukoševičienė, O.; Maruschak, P.; Patapavičius, A.; Juozapaitis, A. 2017. A feasibility study of using composite reinforcement in transport and power industry structures, Transport 32(3): 321–329. https://doi.org/10.3846/16484142.2017.1342689

Varvani-Farahani, A. 2010. Composite materials: characterization, fabrication and application-research challenges and directions, Applied Composite Materials 17(2): 63–67. https://doi.org/10.1007/s10443-009-9107-5

Yang, Z.; Wu, K. 2016. Experimental analysis of tensile mechanical properties of sprayed FRP, Advances in Materials Science and Engineering 2016: 3514830. https://doi.org/10.1155/2016/3514830

Zefreh, M. M.; Meszaros, F.; Junevičius, R.; Torok, A. 2017. Economic investigation of a public transport support policy: a case study at Budapest, Promet – Traffic & Transportation 29(1): 77–84. https://doi.org/10.7307/ptt.v29i1.2072

Žurauskienė, R.; Naujokaitis, A. P.; Mačiulaitis, R.; Žurauskas, R. 2012. Statybinės medžiagos. Vilnius: Technika. 540 p. https://doi.org/10.3846/1315-S (in Lithuanian).